

Evidence pack

Chatham Islands

June 2025 Version 1.0

Copyright information

Copyright ©. This copyright work is licensed under the Creative Commons Attribution 4.0 International licence. In essence, you are free to copy, distribute and adapt the work, as long as you attribute the work to NZ Transport Agency Waka Kotahi (NZTA) and abide by the other licence terms. To view a copy of this licence, visit <u>http://creativecommons.org/licenses/by/4.0/</u>.

Disclaimer

NZTA has endeavoured to ensure material in this document is technically accurate and reflects legal requirements. However, the document does not override governing legislation. NZTA does not accept liability for any consequences arising from the use of this document. If the user of this document is unsure whether the material is correct, they should refer directly to the relevant legislation and contact NZTA.

More information

NZ Transport Agency Waka Kotahi Published June 2025 Version 1.0

If you have further queries, call our contact centre on 0800 699 000 or write to us:

NZ Transport Agency Waka Kotahi Private Bag 6995 Wellington 6141

Contents

Introduction	5
What's in the evidence pack?	5
What's in this Chatham Islands section?	5
Chatham Islands overview	6
Strategic measures – current and future	8
Healthy and safe people	8
Insights	9
Resilience and security	9
Insights	9
Economic prosperity	10
Insights	10
Environmental sustainability	10
Insights	11
Inclusive access	11
Insights	11
Current and future challenges	12
Local context	12
Improving transport resilience	12
Funding new and maintaining existing infrastructure	12
Improving road safety and quality	12
Focusing effort	13
Short- and longer-term investment focus	13
Getting more from existing infrastructure, by making the most of existing networks, serv	ices.13
Seeking continuous improvement in network resilience through maintenance, renewals cost, low-risk investments	
Focusing on the longer-term network needs:	13
Potential interventions	14
Insights	14
Short-list of most effective interventions	14
Appendix A: Data sources for the strategic measures	15
Healthy and safe people	15
Infrastructure risk rating (safety)	17
Resilience and security	
Economic prosperity	
5.1.2 Travel time reliability – motor vehicles	20
5.1.3 Travel time delay	20
5.2.3 Freight – mode share weight – base year 2024	21
5.2.3 Freight – mode share weight – future year 2048	21

Environmental sustainability	22
8.1.1 Greenhouse gas emissions (all vehicles)	. 23
8.1.3 Light vehicle use impacts	23
Inclusive access	24
10.2.1 People – mode share	24
Accessibility to employment	. 25
10.3.1 Access to key social destinations (all modes)	. 25
Appendix B: Intervention Catalogue	27

Introduction

This Chatham Islands section is part of the *Evidence pack*, which is intended to help in the preparation of the strategic front end of regional land transport plans (RLTPs).

It does this by providing a consistent set of data and information setting out the current and future state of New Zealand's transport system at a national and regional level, and what interventions are likely to be effective to address identified deficiencies.

This iteration (version 1, June 2025) is the first step in the collaborative development with the sector of consistent and comprehensive evidence and information. For future iterations we will be drawing on your feedback to iteratively improve it and close any data and analysis gaps.

For more background information about the evidence pack, see the <u>Introduction and national</u> <u>summary</u>.

What's in the evidence pack?

The complete evidence pack is available on the Transport Insights portal.

There you will find:

- evidence pack introduction and national summary, which gives you more background to the pack, its purpose and where the information and data are sourced from, and provides an overview for the whole country
- a section for each region, with data and information (calculated as strategic measures) specific to that region, and discussion of how it fits into the national network.

What's in this Chatham Islands section?

Each regional section follows the same structure:

- Chatham Islands overview a brief overview of the Chatham Islands.
- **Strategic measures** which looks at how the region currently rates against the 14 strategic measures from the Land Transport Benefits Framework, and how it is expected to change over time.
- Current and future challenges specific issues for the region to address.
- **Focusing effort** identifies key areas to focus investment in the short and longer term, and includes targeted suggestions of potential interventions.
- **Appendices** data sources for the strategic measures and more information on potential interventions.

Chatham Islands overview

Just over 700 people live on the Chatham Islands, located about 800kms to the east of the South Island. The Chatham Islands consists of a small group of 11 islands that range in size from just a few hectares, to the main Chatham Island at just over 920 square kilometres. The islands are New Zealand's most easterly territory and include rocky coastlines, volcanic peaks, limestone and basalt cliffs to swampland and lakes and endless expanses of golden or white sandy beaches.¹

Only Chatham and Pitt islands are populated. There are 5 main settlement areas on Chatham Island. Waitangi and Te One are relatively close together near the island's centre, with Waitangi being the main settlement and location of the port, council, bank, shops and hotel. The other settlements are located around the island's main fishing ports – Owenga in the southeast, Port Hutt in the northwest, and Kaingaroa in the northeast. The economy of the Chatham Islands is heavily dependent on fishing, farming and tourism.

The settlements are located where the main roads radiate out from Waitangi to end at each settlement. None of these roads connect as a loop road with another main road. Therefore, a substantial roading network is necessary to connect each of these sparsely populated settlements.² Maintaining roads in this remote territory presents challenges with the cost of freight, reduced economies of scale and a lack of a quarry source in the southeastern region.

Statistics NZ population projections suggest that the islands' population will remain stable over the next 30 years because of natural increase.³ Land use will remain relatively static over the next 10 years because of limited on-island development opportunities.⁴

57% of residents identify as having iwi affiliation, significantly higher than the national average.⁵ Ngāti Mutunga and Moriori are the main iwi groups in the islands, with the latter the original settler group 800 years ago.

With a low population base and wide geographic spread of residents, providing large-scale infrastructure to serve the majority of the community is generally not feasible. This makes the roading network extremely important to provide connectivity between settlements and enable social and economic outcomes for the community.

A single sea vessel has a crucial role in the freight task connecting export and import goods between the islands and mainland New Zealand. The MNV Southern Tiare serves all ports, operating a regular service between Waitangi, Pitt Island, Timaru and Napier.⁶ The ship is at the end of its life and a

² Chatham Islands Council (2024). Chatham Islands Council Long Term Plan 2024–34

https://www.cic.govt.nz/assets/CIC/Documents/Chatham-Islands-Council Long-Term-Plan-2024-34.pdf ³ Stats NZ (2018). Subnational population projections, characteristics, 2018(base)-2048.

https://explore.data.stats.govt.nz/vis?tm=Subnational%20population%20projections&pg=0&snb=21&df[ds]=ds-nsiws-

disseminate&df[id]=POPPR_SUB_011&df[ag]=STATSNZ&df[vs]=1.0&dq=.067..&ly[cl]=PROJECTION_POPPR_SUB_011%2CMEASURE_POPPR_SUB_011&to[TIME]=false&hc[Society]=Population%20projections%20%3E% 20Subnational%20population%20projections&vw=tb_

⁴ Stats NZ (2018). Subnational population projections, characteristics, 2018(base)-2048. <u>https://explore.data.stats.govt.nz/vis?tm=Subnational%20population%20projections&pg=0&snb=21&df[ds]=ds-nsiws-</u>

disseminate&df[id]=POPPR_SUB_011&df[ag]=STATSNZ&df[vs]=1.0&dq=.067..&ly[cl]=PROJECTION_POPPR_SUB_011%2CMEASURE_POPPR_SUB_011&to[TIME]=false&hc[Society]=Population%20projections%20%3E%_20Subnational%20population%20projections&vw=tb_

⁵ Stats NZ (2023). Iwi affiliation, ethnicity, age, and gender for the Māori descent census usually resident population count, (RC, TALB, Health), 2013 and 2023 censuses.

https://explore.data.stats.govt.nz/vis?pg=0&snb=105&df[ds]=ds-nsiws-

disseminate&df[id]=CEN23 MAO 072&df[ag]=STATSNZ&df[vs]=1.0&dq=2013%2B2023.067%2B9999%2B9999 9%2B999999.1201%2B1202%2B99999.999.999.99&ly[rw]=CEN23 GEO 008&ly[cl]=CEN23 YEAR 001%2CCE N23 IWI 001&to[TIME]=false&tm=iwi

¹ Tourism Chatham Islands (2025). Our islands. <u>https://chathamislands.co.nz/our-islands/</u>

⁶ Chatham Islands Shipping Ltd (2025). About us. <u>https://www.chathamislandsshipping.co.nz/about</u>

Shipping Replacement Service Working Group, which includes the Chatham Islands Council, Ministry of Transport and others, has been set up to find a solution for replacement.⁷

The Chatham Islands has a total land transport network length of 179kms across the 11 islands. It consists largely of unsealed roads which connect the communities to each other and to key external transportation ports (the airport and Waitangi Wharf) on the Island.⁸ The sealed road network spans 13kms, covering the settlements of Waitangi, Te One, Owenga and Kaingaroa.⁹

A good level of service for asset replacement and maintenance/renewals is being provided by a threeyearly cycle replacement of bridges to culverts where possible as well as a rolling three-year maintenance programme of 2 years of unsealed rehabilitations each side of a sealed rehabilitation year. This is providing certainty and continuity for the community.¹⁰

There are no state highways, rail or public transport systems on the Chatham Islands. The majority of residents (62 percent in 2018¹¹) use a vehicle to get to work. There is a relatively high proportion of residents walking to school (23 percent) and work (7 percent)¹² and utilisation of school buses is high at 33 percent.¹³

Key transport projects on the islands include:

- strengthening ageing and damaged parts of the unsealed pavement network on key routes
- targeted resilience improvements at high-risk locations
- surface water channel improvements
- replacement of poor-condition culverts and
- replacement of end-of-life bridge components on Maipito Bridge.

⁸ Chatham Islands Council (2021). Chatham Islands Regional Land Transport Programme 2021–2031. <u>https://www.cic.govt.nz/documents/regional-land-transport-programme-2021-2031/</u>

⁷ Chatham Islands Council. (2024). Chatham Islands Strategy 2024–28.

https://www.cic.govt.nz/assets/CIC/Documents/Chatham-Islands-Strategy-2024-28.pdf

⁹ NZTA (2024) Chatham Islands regional summary NLTP 2024-27. <u>https://www.nzta.govt.nz/assets/planning-and-investment/nltp/2024/docs/regional-summaries/chatham-islands-regional-summary-nltp-2024-27.pdf</u>

¹⁰ Chatham Islands Council (2024). Chatham Islands Council Long-Term Plan 2024–34 <u>https://www.cic.govt.nz/assets/CIC/Documents/Chatham-Islands-Council Long-Term-Plan-2024-34.pdf</u>

¹¹ Stats NZ (2018).Chatham Islands 2018 census data. <u>https://www.stats.govt.nz/tools/2018-census-place-summaries/chatham-islands#transport</u>

¹² ibid

¹³ ibid

Strategic measures – current and future

This section provides tables summarising the 14 strategic measures in relation to the Chatham Islands. Only limited data is currently available for the Chatham Islands, therefore many of the measures will not have outputs recorded. These instances are denoted by 'N/A' (not available). This may change for future iterations of the evidence pack. The data and evidence (where available) used to produce these results is included in <u>Appendix A</u>.

The 14 strategic measures are a subset of 60+ measures included in the <u>Land Transport Benefits</u> <u>Framework</u>. They have been selected to provide a coarse but practical overview of the 5 Transport Outcomes, as shown in the diagram.

The tables provide indicative current and future values for the 14 strategic measures (grouped by outcome), to understand how each measure (and therefore outcome) is likely to change if there is no significant investment (beyond that already committed).

More detail about the measures can be found in the Land Transport Benefits Framework measures manual.

Healthy and safe people

The relatively small amount of road travel and small population in the Chatham Islands means that calculating average deaths and serious injuries (DSIs) is unhelpful. The number of reported DSIs in the last 5 years have been a total of 3 (1 fatal and 2 serious).

Benefit framework measure	Units	Current (2023/24)	Future (2048)	Change
1.1.1 Collective risk (crash density)	Average annual fatal and serious per kilometre of road section	0	-	-
1.1.3 Deaths and serious injuries (DSIs)	Number of DSIs (annual)	0	-	-
1.1.4 Personal risk (crash rate)	Average annual DSI per 100 million vehicle kilometres travelled	0	-	-
1.2.1 Road assessment rating – roads	Infrastructure risk rating (applies to both current and future)	High: N/A% Medium-high: N/A% Medium: N/A% Low-medium: N/A% Low: N/A%		N/A

Healthy and

A transport

system that

improves wellbeing and

liveability

Resilience and security

Insights

- The number of current (2023/2024) DSIs is zero, therefore both the collective risk and personal risk is negligible. This is likely to hold into the future because vehicle kilometres travelled (VKT) are not projected to grow over time (see measure 8.1.3 Light vehicle use impacts under environmental sustainability outcome).
- Infrastructure risk rating (IRR) describes the underlying level of risk a road presents to an individual road user based on key physical and operational attributes. There is currently no IRR data available for Chatham Islands. This is reported as 'N/A' until this information is available.

Resilience and security

Benefit framework measure	Units	Current (2023/24)	Future (2048)	Change
4.1.1 Availability of a viable alternative to high-risk and high-impact route	Percentage of high-risk, high-impact route with a viable alternative	Not included in this release		
4.1.2 Level of service and risk (note that for this evidence pack this data is from the National Resilience Assessment Tool (NRAT) and includes only state highways)	Number of identified sites in region by combined risk rating (future, geological and hydrological)	Low: N/A Med: N/A High: N/A Critical: N/A	N/A	N/A

Insights

• There is currently no National Resilience Assessment Tool (NRAT) data available for Chatham Islands. This is reported as 'N/A' until this information is available.

Economic prosperity

Benefit framework measure	Units	Current (2024)	Future (2048)	Change
5.1.2 Travel time reliability – motor vehicles (note for this evidence pack, the data only relates to state highway traffic monitoring system (TMS) sites)	Calculated using coefficient of variation (CoV); standard deviation of travel time divided by average minutes travel time Rate: High <0.3, Medium 0.3–0.6, Low >0.6)	Low: AM N/A% Day N/A% Med: AM N/A% Day N/A% High: AM N/A% Day N/A%	Low: N/A% Med: N/A% High: N/A%	Low: N/A% Med: N/A% High: N/A%
5.1.3 Travel time delay (note, data is from National Network Performance (NNP) model, which is currently limited to state highway TMS sites).	Difference between average travel time during AM peak and average travel time during the inter-peak in minutes per kilometre (by mode) as a percentage	Car: N/A PT: N/A Cycle: N/A	Car: N/A PT: N/A Cycle: N/A	Car: N/A PT: N/A Cycle: N/A
5.2.2 Freight – mode share value	Percentage of value for each mode	Not included in this release		
5.2.3 Freight – mode share weight	Percentage of weight for each mode	Road: 100% Rail: 0%	Road: 100% Rail: 0%	Road: 0% Rail: 0%

Insights

- There is currently no travel time data available for Chatham Islands. This is reported as 'N/A' until this information is available.
- There is no rail network on the Chatham Islands, therefore all land freight is transported by road.
- The port and airport are critical components of the Chatham Islands network.

Environmental sustainability

Benefit framework measure	Units	Current	Future	Change
8.1.1 Greenhouse gas emissions (all vehicles)	Annual tonnes of CO2 equivalents emitted (CO2-e)	0.002 m	0.001 m	-0.001 m (-39%)
8.1.3 Light vehicle use impacts	Annual light vehicle kilometres travelled (light VKT)	4.6 m	4.2 m	- 0.4 m (-8%)

Insights

- Total light vehicle VKT is indicated to decrease by 4 percent (because of a decreasing population), and GHG emissions are indicated to decrease significantly (-39 percent) primarily because of electrification of the vehicle fleet over times (as forecast using the Ministry of Transport Vehicle Fleet Model (VFM). The actual rate of change for Chatham Islands is likely to be less than the rest of New Zealand due to remoteness.
- Because of its small size and population, Chatham Islands contributes less than 0.02 percent of New Zealand's total land transport emissions.

Inclusive access

Benefit framework measure	Units	Current	t (2023)			Future	(2048)			Change			
10.2.1 People – mode share	Percentage by mode (Census (2023) journey to work and education)	Car: 91 PT: 0% Cycle: Peds: 8	1%			N/A N/A N/A N/A				N/A N/A N/A N/A			
10.3.1 Access to key social destinations (all modes)	Number of jobs (x1000) accessible by mode in AM peak (car 40 min, PT 45 min, cycle 45 min) and distance from city centre (km)	Car: PT: Cycle:	0-5 N/A N/A N/A	5–10 N/A N/A N/A	10+km N/A N/A N/A	Car: PT: Cycle:	0-5 N/A N/A N/A	5-10 N/A N/A N/A	10+km N/A N/A N/A	Car: PT: Cycle:	0-5 N/A N/A N/A	5-10 N/A N/A N/A	10+km N/A N/A N/A

Insights

- Journeys to work and education by all modes are less than 0.01 percent of the national total, the lowest contribution of all regions. The proportion of these journeys made by car are 12 percent higher than the rate for the country as a whole and the first -highest rate by region. There is no public bus service on the Chatham Islands. Therefore, public transport use is 7 percent lower than the rate for the country as a whole and the lowest in the country. The proportion of people cycling is lower than the country as a whole and the second-lowest by region. The proportion of people walking is 2 percent lower than the country as a whole and the fifth-lowest by region.
- No accessibility information is currently available for Chatham Islands.

Current and future challenges

To achieve a land transport network that is safe, efficient and effective for the Chatham Islands, it is important to understand it in combination with the needs and lives of the region's people and the unique natural and built environment.

Local context

Improving transport resilience

The next 30 years will see a growing risk of damage to road and drainage networks because of increased rain and storm intensity, coastal and soil erosion, sea level rise, flooding, slips, and storm surges.¹⁴

As a group of remote islands, most of the important infrastructure is located very near to the coastline, leaving it susceptible to natural disasters caused by the ocean and the impacts of climate change and drought. Cyclones, tsunamis and localised flooding have the potential to damage key infrastructure such as wharves, bridges, seawalls and roads. Some areas may be cut-off as a result of such events as the roads become impassable.

More heavy rainfall will increase water levels in Te Whanga Lagoon, increasing the risk of surface flooding of nearby roads.¹⁵ The main area of concern is Waitangi, where the combination of higher sea levels and a severe storm could adversely affect the road connecting Waitangi wharf.¹⁶

The increasingly unreliable nature of the single shipping connection to the island makes it challenging to run a maintenance programme exactly at the scheduled timing. A change in shipping arrangements can (and does) change the timing of work, sometimes by up to a year.

Funding new and maintaining existing infrastructure

The Chatham Islands' remote location means a higher cost of doing business. The small proportion of rateable land, an increasing proportion of residents on fixed incomes and a static population is likely to put pressure on the islands' ability to:

- maintain existing infrastructure
- fund new infrastructure
- provide appropriate services.

Improving road safety and quality

The quality of the road network is a particular challenge because of the amount of shallow unsealed pavement and drainage issues. Older bridge structures restrict heavy vehicle load limits and, if not complied with, endanger structural integrity and the safety of motorists. Increasing failures will lead to an increased cost of reactive maintenance and a higher cost of vehicle maintenance for road users.¹⁷

Achieving the desired level of service for road quality in the future is challenged by the supply risk of locally sourced pavement materials. Existing quarries serve the north of the island well, but the south and east of the island are poorly served.¹⁸ Hauling material is putting pressure on older sections of sealed

¹⁴ NIWA (2025). Regional projections: Zone 7. <u>https://niwa.co.nz/climate-change-adaptation-toolbox/projected-regional-climate-change-hazards/regional-projections-zone-7</u>

¹⁵ Chatham Islands Council (2024). Chatham Islands Council Long-Term Plan 2024–34. <u>https://www.cic.govt.nz/assets/CIC/Documents/Chatham-Islands-Council Long-Term-Plan-2024-34.pdf</u>

¹⁶ Chatham Islands Council (2024). Chatham Islands Council Long-Term Plan 2024–34. <u>https://www.cic.govt.nz/assets/CIC/Documents/Chatham-Islands-Council Long-Term-Plan-2024-34.pdf</u>

¹⁷ Chatham Islands District Council (2024). Chatham Islands Council Long Term Plan 2024–34

https://www.cic.govt.nz/assets/CIC/Documents/Chatham-Islands-Council Long-Term-Plan-2024-34.pdf ¹⁸ Chatham Islands Council (2024). Chatham Islands Council Long-Term Plan 2024–34.

https://www.cic.govt.nz/assets/CIC/Documents/Chatham-Islands-Council Long-Term-Plan-2024-34.pdf

pavement, increasing the rate of deterioration and distances increase the cost and time of works in the southern end of the island. Investigating suitable quarry locations for the south as well as new sources once the northern quarries are exhausted is a critical long-term task for the region.

Although serious injury road crashes are relatively unusual, with the lowest collective risk in the country at 0 average DSI over 5 years,¹⁹ visitors to the islands are at particular risk because of unfamiliar driving conditions such as unsealed roads or driving unfamiliar vehicles such as 4-wheel drives.

Focusing effort

Note: this section has a high-level strategic focus; we'll develop more specificity in future iterations of the evidence pack.

Based on the preceding sections and consideration of regional investment priorities identified in the RLTP, the following list of areas of investment focus have been identified.

Short- and longer-term investment focus

Priority for the short- and much of the long-term is the same – a focus on maintenance, operations and renewals so that the transport network is at an adequate standard, while improving the accessibility, safety and suitable customer levels of service to all areas. This will be achieved by close working relationships between local government, imi and iwi and landowners.

Projects in the shorter term typically will involve low-cost, low-risk, high-effectiveness improvements and projects that 'set the scene' to incrementally enable (or transition to) longer-term outcomes.

Getting more from existing infrastructure, by making the most of existing networks, services

- Establishing safe travel routes for high foot travel areas, particularly schools.
- Ensure an overall 'good' driving experience in terms of quality and safety.

Seeking continuous improvement in network resilience through maintenance, renewals, and low-cost, low-risk investments

- Strengthening unsealed sections on key routes where the pavement was laid more than 20 years ago or is showing signs of structural failure.
- Resilience-targeted improvements at higher-risk locations.
- Ongoing programme of culvert replacements.
- Continuing replacement of existing bridges with large culverts where possible to enhance safety and reduce future maintenance needs including 2 lifeline bridges – Maipito Bridge and Lower Nairn Bridge in the short term.
- Monitoring the long-term integrity of the sea walls in Waitangi.

Focusing on the longer-term network needs:

- Continuing work to better understand the impact of climate change on maintenance, operations and renewals.
- Investigate and confirm a quarry source in the south-eastern region.
- Delivery of a replacement shipping solution.

¹⁹ NZTA (2024). Communities at Risk Register 2024. <u>https://www.nzta.govt.nz/assets/resources/communities-at-risk-register-2024.pdf</u>

Potential interventions

As part of the PIE programme, NZTA is developing the Intervention Catalogue (IC) tool, which compiles a wide range of empirical data relating to the implementation of transport projects and how effective they were in achieving the intended outcomes. We'll continue to add to this over time, using data from benefit realisation associated with the investment logic mapping (ILM) process.

An AI interface for supporting queries and providing relevant evidence is currently being investigated.

An example of how exploratory use of this tool might be used to match potential interventions to deficiencies to understand and compare the likely relative effectiveness is included in <u>Appendix B</u>.

The process seeks to avoid potential pitfalls that might occur during option formulation:

- an over-reliance on preconceived ideas
- a focus on the more obvious supply-side measures, such as infrastructure and management rather than demand-side measures such as regulation and pricing
- a general lack of awareness of the wider range of policy measures available
- lack of evidence of the performance of those measures in other contexts
- lack of a formalised or consistent approach for option generation.

The example tables included in <u>Appendix B</u> take the focus areas and related transport issues from the previous section of this report and maps them to some relevant interventions from the KonSULT knowledgebase.

Insights

Using IC is only intended to inform the option formulation process. It does not replace the need for judgement, but rather provides a set of empirical evidence that supports decisions (along with additional information sources).

The table of IC interventions included in <u>Appendix B</u> indicates that the most effective intervention for Chatham Islands is:

o existing network road maintenance.

Short-list of most effective interventions

It is intended that the information and tools provided above will assist consideration and development of projects to be included in the next RLTP and NLTP.

It provides a starting point for us to understand regional issues and investment opportunities, which can then be expanded upon through further engagement between approved organisations and NZTA to increase the likelihood of suitable projects being submitted for funding via the NLTP.

Appendix A: Data sources for the strategic measures

This appendix references all relevant data sources and assumptions for the <u>14 strategic measures</u> reported within each regional chapter.

Because this is the first attempt at providing the evidence pack, and the development of the associated tools and processes under the Planning and Investment Evidence base (PIE) programme is still ongoing, we do not yet have the full capability to report outputs for all measures, particularly for future years. In these instances, we have noted that the data is 'not available' by using the 'N/A' abbreviation as a placeholder until such time this can be addressed by a subsequent version of the evidence pack.

Similarly, the process has identified the need for better understanding and reporting of data quality ratings, version control and internal consistency (that is, a single source of truth). These are all things we intend to improve in subsequent releases.

Bearing the above in mind, we have adopted the following general convention for this version in how we report numbers:

- For large numbers, only report 3–4 significant figures (and using rounding units of thousands or millions).
- For small numbers (including percentages), report to one decimal place by default, but make exceptions where appropriate (for example where more or less detail is required to make meaningful comparisons).

The focus is on convenience and the useability of the data. As such, it doesn't necessarily imply a particular level of accuracy (especially for future year forecasts, which have a great deal of uncertainty associated with them).

Each section below (grouped by outcome) provides data for all regions to allow comparison in terms of how each region contributes to the national total. It also provides any important caveats and limitations associated with each of the measures for that outcome.

Healthy and safe people

To understand the current and future safety risk both at the regional and national level, we calculated deaths and series injuries, personal risk and collective risk as shown in the following table. More details can be found in the <u>Land Transport Benefits Framework</u>.

Benefit framework measure	Units
1.1.1 Collective risk (crash density)	Average annual fatal and serious per kilometre of road section
1.1.3 Deaths and serious injuries (DSIs)	Number of DSIs (annual)
1.1.4 Personal risk (crash rate)	Average annual DSI per 100 million vehicle kilometres

Notes, caveats and data limitations:

- Data for the number of deaths and series injuries (DSIs) is sourced from the Crash Analysis System (CAS) database managed by NZTA.
- Regional VKTs and network length in kilometres is sourced from the NZTA official data published for financial year 2023/24.²⁰
- Generally, DSI measures are calculated as multi-year rolling average. However, because of time and resource constraints the following data is for the financial year 2023/24 only.
- Future year growth factor is based on regional VKT change. This method to calculate this change is discussed in more detail for the 'E.4 Environmental sustainability' section later in this appendix.

²⁰ <u>https://www.nzta.govt.nz/planning-and-investment/learning-and-resources/transport-data/data-and-tools/</u>

- It is assumed that crash rates remain constant over time. This is consistent with safety expert advice that application of crash trend adjustment factors for long term future predictions may no longer be supported by evidence.
- Future year DSIs were estimated based on the regional change on VKT (all vehicles) between 2023 and 2048 adopted for the GHG emissions measure (8.1.1). This assumes the crash rate (per VKT) remains constant (that is, no crash trend reduction factors applied).

Region	Current 2023	/24		Future 2048		
	DSIs #	Per km	Per 100 million VKT	DSIs #	Per km	Per 100 million VKT
01 – Northland	181	0.027	7.783	176	0.026	7.554
02 – Auckland	593	0.073	4.267	924	0.114	6.651
03 – Waikato	416	0.035	6.372	501	0.042	7.678
04 – Bay of Plenty	184	0.038	5.321	210	0.044	6.059
05 – Gisborne	33	0.015	7.779	37	0.016	8.737
06 – Hawke's Bay	125	0.027	7.005	145	0.031	8.135
07 – Taranaki	82	0.021	6.293	97	0.024	7.429
08 – Manawatū-Whanganui	234	0.026	7.718	231	0.026	7.619
09 – Wellington	171	0.039	4.671	230	0.052	6.289
10 – Top of the South	117	0.027	6.868	151	0.035	8.848
11 – Canterbury	346	0.021	5.007	480	0.030	6.942
12 – West Coast	43	0.014	7.548	43	0.014	7.545
13 – Otago	137	0.013	4.799	142	0.013	4.968
14 – Southland	51	0.007	3.877	53	0.007	4.024
15 – Chatham Islands	0	0.000	0.000	0	0.000	0
National	2713	0.025	5.451	3419	0.035	5.055

Infrastructure risk rating (safety)

We calculate strategic measure 1.2.1 Road assessment rating to understand the current situation of infrastructure risk both at regional and national level. This measure can be used for any safety-related investment benefits, particularly those that target road infrastructure to improve safety. It is a comprehensive measure that considers land use, road type, alignment, average annual daily traffic (AADT), intersection density, land and shoulder width, roadside hazards and access density. More details can be found in the Land Transport Benefits Framework.

Benefit framework measure	Units
1.2.1 Road assessment rating – roads	Average infrastructure risk rating

Notes, caveats and data limitations:

- Data to calculate the regional infrastructure risk rating (IRR) measure in the following table is sourced from Megamaps, which is a geospatial platform managed by NZTA.²¹
- IRR data used to calculate regional and national measure values in the following table was calculated in Megamaps in 2024. The raw data used is for the period 2019–23.
- The data in Megamaps is for each road segment, intersection or corridor. We have aggregated it to calculate regional percentages under each risk band.

Region	High	Medium- high	Medium	Low- medium	Low
01 – Northland	45.77%	26.44%	18.74%	8.34%	0.71%
02 – Auckland	14.92%	17.54%	48.12%	13.18%	6.24%
03 – Waikato	21.40%	25.42%	34.39%	15.15%	3.64%
04 – Bay of Plenty	17.10%	20.74%	37.82%	19.35%	4.99%
05 – Gisborne	50.43%	19.93%	21.93%	7.50%	0.21%
06 – Hawke's Bay	33.47%	25.30%	29.79%	9.16%	2.28%
07 – Taranaki	28.83%	24.08%	33.13%	13.13%	0.83%
08 – Manawatū-Whanganui	41.81%	19.13%	25.67%	12.43%	0.96%
09 – Wellington	17.98%	19.51%	41.67%	13.62%	7.22%
10 – Top of the South	33.70%	23.83%	28.06%	12.94%	1.47%
11 – Canterbury	10.87%	29.16%	42.29%	16.36%	1.32%
12 – West Coast	17.75%	29.97%	38.04%	13.61%	0.63%
13 – Otago	21.83%	37.95%	26.55%	12.63%	1.04%
14 – Southland	6.99%	41.27%	37.99%	13.34%	0.42%
National%	23.21%	2.29%	13.50%	34.25%	26.75%

²¹ <u>https://spatial.nzta.govt.nz/apps/megamaps/</u>

Resilience and security

This transport outcome is about minimising and managing the risks from natural and human-made hazards, anticipating and adapting to emerging threats, and recovering effectively from disruptive events. We intended to use strategic measure 4.1.1 and 4.1.2 from the Land Transport Benefits Framework to understand the resilience and security situation at national and regional level. However, we don't currently have data to calculate measure 4.1.1, so this time around we have only calculated measure 4.1.2. The intent of the measure 4.1.2 is to allow for description and measurement of the risk to level of service by unplanned disruption (including earthquakes, storms, volcanos and tsunamis). This measure is generally used for any investment that focuses on maintaining or increasing the resilience of the transport network.

Benefit framework measure	Units
4.1.1 Availability of a viable alternative to high-risk and high- impact route	Percentage of high-risk, high-impact route with a viable alternative
4.1.2 Level of service and risk	Number of identified sites in region by combined risk rating (future, geological and hydrological)

Notes, caveats and data limitations:

- The data for the following measure is sourced from the National Resilience Assessment Tool (NRAT) managed by NZTA.²²
- The following table shows the regional number of resilience risks on state highways under each risk band. This includes hydrological, geological and future risks.
- 'No rating' is for considered risk sites that have not yet been rated.
- There is no easy way to currently calculate future projections for this measure, but we are working on the capability to do so.

Regions	Critical	High	Moderate	Low	No rating
01 – Northland	29	84	276	171	169
02 – Auckland	5	13	29	41	1
03 – Waikato	20	175	212	174	149
04 – Bay of Plenty	16	64	153	121	67
05 – Gisborne	1	7	35	49	74
06 – Hawke's Bay	18	123	72	30	143
07 – Taranaki	0	11	9	0	98
08 – Manawatū-Whanganui	1	11	9	8	8
09 – Wellington	39	37	25	118	1
10 – Top of the South	9	51	59	177	91
11 – Canterbury	32	88	57	195	46
12 – West Coast	34	49	21	34	37
13 – Otago	26	84	86	247	172
14 – Southland	27	23	18	28	14
National	257	820	1061	1393	1070

²² https://national-resilience-assessment-tool-nzta.hub.arcgis.com/

Economic prosperity

This transport outcome is about supporting economic activity via local, regional, and international connections, with efficient movements of people and products. We calculated the following strategic measures from the <u>Land Transport Benefits Framework</u> to measure the economic prosperity outcomes at both regional and national level.

Benefit framework measure	Units
5.1.2 Travel time reliability – motor vehicles (note for this evidence pack, the data only relates to state highway traffic monitoring system (TMS) sites)	Calculated using coefficient of variation (CoV); standard deviation of travel time divided by average minutes travel time
	Rate: Low <0.3, Medium 0.3–0.6, High >0.6)
5.1.3 Travel time delay	Difference between average travel time during AM peak and average travel time during the Inter Peak in minutes per kilometre (by mode) as a percentage
5.2.2 Freight – mode share value	Percentage of value for each mode
5.2.3 Freight – mode share weight	Percentage of weight for each mode

Notes, caveats and limitations:

- Data for travel time reliability and delay measures is sourced from the National Network Performance (NNP) platform managed by NZTA.
- The sources used to calculate following measures is limited to the TMS sites only that is, for state highways. In future, as more data is available in NNP for local roads, we intend to calculate using extensive local and state highway roads. Additionally, NNP will be able to assess both travel time delay and travel time reliability.
- The data for 5.1.2 Travel time reliability and 5.1.3 Travel time delay is for a typical day.
- Where we have gained access to regional model origin-destination data (for Auckland, Waikato, Wellington and Christchurch), we have used this to estimate current and future values of travel time for all available modes.
- Measure 5.2.2 Freight mode share value has been selected as one of the 14 strategic measures but currently, there is insufficient data to reliably calculate this. Therefore, the data table for this measure remains unpopulated as a placeholder.
- Measure 5.2.3 Freight mode share weight would ideally include coastal shipping but currently only includes road and rail modes.
- Future road freight is based on the same data used to forecast heavy commercial vehicle (HCV) VKT (also used for other measures) combined with average cargo weight from weigh-in-motion (WiM) sites (collected for the North Island only, but also applied to the South Island due to lack of data from the South Island). This data covers seven years and shows a trend of average load sizes decreasing over time. This trend line was used to estimate the 2048 average cargo weight (4615kg). Compared to the 2024 value (4822kg), this implies the average load size is projected to decrease by 7%. In contrast, national HCV VKT is projected to increase by 39% (2024 to 2048).
- The last seven years of rail freight net tonne-kilometres (NTK) by line segment has been provided by KiwiRail. This indicates that the amount of freight is reasonably steady over this period (with a small decline over the last few years). Based on the overall trend, we have assumed future year (2048) NTK will remain the same as current day (2024)
- A discrepancy in the rail data has been noted, where a 27km section of the network is missing from the calculations. This is possibly the section between Palmerston North and Woodville, which has been noted for further follow up.

5.1.2 Travel time reliability - motor vehicles

Region	Daily (CoV)) Peak time (CoV)				
	Low	Medium	High	Low	Medium	High
01 – Northland	96.43%	3.57%	0.00%	88.24%	0.00%	11.76%
02 – Auckland	96.67%	2.50%	0.83%	78.57%	9.18%	12.24%
03 – Waikato	94.59%	1.35%	4.05%	95.00%	0.00%	5.00%
04 – Bay of Plenty	100.00%	0.00%	0.00%	80.56%	19.44%	0.00%
05 – Gisborne	96.30%	3.70%	0.00%	100.00%	0.00%	0.00%
06 – Hawke's Bay	98.95%	1.05%	0.00%	65.38%	34.62%	0.00%
07 – Taranaki	94.74%	5.26%	0.00%	69.44%	16.67%	13.89%
08 – Manawatū-Whanganui	92.11%	7.89%	0.00%	82.56%	8.14%	9.30%
09 – Wellington	92.37%	6.78%	0.85%	67.90%	30.86%	1.23%
10 – Top of the South	100.00%	0.00%	0.00%	86.49%	10.81%	2.70%
11 – Canterbury	94.39%	3.96%	1.65%	73.98%	16.84%	9.18%
12 – West Coast	96.30%	1.23%	2.47%	98.08%	0.00%	1.92%
13 – Otago	92.59%	6.79%	0.62%	75.56%	17.78%	6.67%
14 – Southland	93.27%	5.77%	0.96%	71.43%	21.43%	7.14%
National	95.30%	3.84%	0.86%	77.34%	15.54%	7.12%

5.1.3 Travel time delay

Region	Peak (mins/km)	Inter-peak (mins/km)	Difference (mins/km)	%Change
01 – Northland	0.78	0.85	0.7	8.40%
02 – Auckland	0.77	0.86	0.8	10.23%
03 – Waikato	0.79	0.87	0.8	9.17%
04 – Bay of Plenty	0.69	0.76	0.6	8.18%
05 – Gisborne	0.75	0.77	0.2	3.30%
06 – Hawke's Bay	0.79	0.87	0.7	9.15%
07 – Taranaki	0.80	0.88	0.7	8.46%
08 – Manawatū-Whanganui	0.73	0.78	0.4	5.72%
09 – Wellington	0.83	1.00	0.2	16.94%
10 – Top of the South	0.82	0.84	0.1	1.98%
11 – Canterbury	0.75	0.77	0.2	3.46%
12 – West Coast	0.74	0.77	0.2	3.13%
13 – Otago	0.74	0.78	0.3	4.69%
14 – Southland	0.73	0.76	0.2	3.23%
National	0.76	0.83	0.6	8.17%

5.2.3 Freight – mode share weight – base year 2024

Region	Road (m NKT/yr)	Rail (m NKT/yr)	Total (m NKT/yr)	Road (%)	Rail (%)
01 – Northland	912	17	929	98%	2%
02 – Auckland	2904	132	3036	96%	4%
03 – Waikato	5016	751	5767	87%	13%
04 – Bay of Plenty	2208	534	2742	81%	19%
05 – Gisborne	301	0	301	100%	0%
06 – Hawke's Bay	1120	31	1152	97%	3%
07 – Taranaki	603	59	661	91%	9%
08 – Manawatū-Whanganui	1824	646	2470	74%	26%
09 – Wellington	1004	102	1106	91%	9%
10 – Top of the South	1193	60	1253	95%	5%
11 – Canterbury	4045	563	4608	88%	12%
12 – West Coast	409	313	722	57%	43%
13 – Otago	1396	220	1616	86%	14%
14 – Southland	776	73	849	91%	9%
15 – Chatham Islands	0	0	0	100%	0%
Grand total	23,712	3,500	27,212	87%	13%

5.2.3 Freight – mode share weight – future year 2048

Region	Road (m NKT/yr)	Rail (m NKT/yr)	Total (m NKT/yr)	Road (%)	Rail (%)
01 – Northland	912	17	929	98%	2%
02 – Auckland	2,904	132	3,036	96%	4%
03 – Waikato	5,016	751	5,767	87%	13%
04 – Bay of Plenty	2,208	534	2,742	81%	19%
05 – Gisborne	301	0	301	100%	0%
06 – Hawke's Bay	1,120	31	1,152	97%	3%
07 – Taranaki	603	59	661	91%	9%
08 – Manawatū-Whanganui	1,824	646	2,470	74%	26%
09 – Wellington	1,004	102	1,106	91%	9%
10 – Top of the South	1,193	60	1,253	95%	5%
11 – Canterbury	4,045	563	4,608	88%	12%
12 – West Coast	409	313	722	57%	43%
13 – Otago	1,396	220	1,616	86%	14%
14 – Southland	776	73	849	91%	9%
15 – Chatham Islands	0	0	0	100%	0%
Grand total	23,712	3,500	27,212	87%	13%

Environmental sustainability

This transport outcome is about transitioning to net zero carbon emissions, and maintaining or improving biodiversity, water quality and air quality. We calculated following strategic measures from the <u>Land</u> <u>Transport Benefits Framework</u> to the measure the economic prosperity outcomes at both regional and national level.

Benefit framework measure	Units
8.1.1 Greenhouse gas emissions (all vehicles)	Annual tonnes of CO ₂ equivalents (CO ₂ -e) emitted
8.1.3 Light vehicle use impacts	Annual light vehicle kilometres travelled (light VKT)

Notes, caveats and limitations:

- Current year data for VKT is sourced from NZTA's open data portal.
- Future light national VKT projections have been sourced from the NZTA 2024 Light VKT projection models. These are based on Stats NZ population growth and forecasts for GDP and fuel prices (mid-range assumptions have been adopted for this evidence pack).
- Future regional light vehicle VKT distribution is based on research work done by Beca (VKT and GHG emissions baseline report <u>NZTA research note 008</u> September 2022). This assumes the base year light VKT per capita remains unchanged and uses population projection to estimate light VKT within each territorial local authority (TLA). The results are aggregated to spatial areas and adjusted to reconcile with the Ministry of Transport (MoT) observed and projected national totals. It uses base and projected light vehicle fleet GHG emissions factors from the <u>Vehicle Fleet Emission Model</u> (VFEM) to calculate GHG emissions for the baseline spatial areas. The report year 2035 (future) VKT values (by region) have been adjusted (scaled) to 2048 national light vehicle (LV) totals.
- Future year regional heavy vehicle VKT distribution has been calculated using growth factors comprising trend data, Stats NZ medium population forecast and Ministry of Business, Innovation and Employment (MBIE) GDP forecast data. This is a placeholder calculation pending further work on HCV demand forecasting currently being developed (using this general approach) as part of the PIE programme.
- GHG emissions have been estimated by applying light and heavy VKT to <u>Vehicle Emissions</u> <u>Prediction Model</u> (VEPM) (v7.0) emission rates (for current and future years) using the default MoT Vehicle Fleet Model (VFM) assumptions within VEPM (for each year) and average vehicle speeds from NNP or regional transport models (Auckland, Waikato, Wellington and Christchurch).
- Estimates of VKT are key inputs to multiple measures (such as vehicle emissions (affecting both health and environmental measures), DSIs, freight etc. Care has been taken to ensure consistency at the national, regional and local levels.

8.1.1 Greenhouse gas emissions (all vehicles)

Region	Current 2024	Future 2048	Change	% Change	Contribution
01 – Northland	0.61	0.27	-0.35	-57%	4%
02 – Auckland	3.58	2.19	-1.38	-39%	26%
03 – Waikato	2.00	1.36	-0.64	-32%	14%
04 – Bay of Plenty	1.01	0.63	-0.38	-38%	7%
05 – Gisborne	0.13	0.07	-0.06	-48%	1%
06 – Hawke's Bay	0.52	0.30	-0.22	-42%	4%
07 – Taranaki	0.35	0.19	-0.16	-46%	3%
08 – Manawatū-Whanganui	0.87	0.49	-0.38	-44%	6%
09 – Wellington	0.93	0.45	-0.48	-52%	7%
10 – Top of the South	0.51	0.36	-0.15	-30%	4%
11 – Canterbury	1.98	1.26	-0.71	-36%	14%
12 – West Coast	0.17	0.10	-0.08	-44%	1%
13 – Otago	0.78	0.40	-0.38	-48%	6%
14 – Southland	0.38	0.21	-0.17	-46%	3%
15 – Chatham Islands	0.002	0.001	-0.001	-39%	0.02%
National	13.83	8.29	-5.54	-40%	100%

8.1.3 Light vehicle use impacts

Region	Current 2024	Future 2048	Change	% Change	Contribution
01 – Northland	2172	2075	-97	-4%	5%
02 – Auckland	13137	20504	7367	56%	29%
03 – Waikato	5597	6514	918	16%	12%
04 – Bay of Plenty	3056	3349	293	10%	7%
05 – Gisborne	369	420	52	14%	1%
06 – Hawke's Bay	1581	1810	229	14%	3%
07 – Taranaki	1199	1397	198	17%	3%
08 – Manawatū-Whanganui	2702	2523	-179	-7%	6%
09 – Wellington	3488	4746	1258	36%	8%
10 – Top of the South	1484	1854	370	25%	3%
11 – Canterbury	6182	8583	2402	39%	14%
12 – West Coast	494	476	-18	-4%	1%
13 – Otago	2610	2624	14	1%	6%
14 – Southland	1175	1182	7	1%	3%
15 – Chatham Islands	5	4	-0.4	-7.9%	0%
National	45250	58062	12812	28%	100%

Inclusive access

This transport outcome is about enabling all people to participate in society through access to social and economic opportunities, such as work, education and health care. We calculated the 10.2.1 and 10.3.1 strategic measures from the <u>Land Transport Benefits Framework</u> to measure the inclusive access outcome both at the national and regional level.

Benefit framework measure	Units
10.2.1 People – mode share	Percentage by mode (Census (2023) journey to work and education)
10.3.1 Access to key social destinations (all modes)	Number of jobs (x1000) accessible by mode in AM peak (car 40 min, PT 45 min, cycle 45 min) and distance from city centre (km)

Notes, caveats and limitations:

- There is a limited information about measure 10.2.1 in the <u>Land Transport Benefits Framework</u> <u>measures manual</u> – that is, its intent, scope, forecasting methods etc are not defined yet.
- Mode share data, that is main means of travel to work and education, is sourced from census 2023 outputs produced by Stats NZ.²³
- The data for all public transport (PT) modes (buses, trains and ferries) is aggregated together.
- Where we have gained access to regional model origin-destination data (for Auckland, Waikato, Wellington and Christchurch), we've used this to estimate current and future values of 10.2.1 People – mode share based on modelled relative changes applied to the base year census values.

Region	%Car	%PT	%Cycle	%Peds
01 – Northland	91.00%	1.33%	0.99%	6.67%
02 – Auckland	77.81%	11.29%	1.32%	9.58%
03 – Waikato	86.34%	2.69%	2.49%	8.48%
04 – Bay of Plenty	87.36%	2.06%	3.37%	7.22%
05 – Gisborne	89.78%	0.43%	2.54%	7.25%
06 – Hawke's Bay	88.12%	0.99%	2.96%	7.93%
07 – Taranaki	87.18%	1.25%	2.91%	8.66%
08 – Manawatū-Whanganui	86.33%	1.77%	2.60%	9.30%
09 – Wellington	63.97%	18.40%	2.98%	14.64%
10 – Top of the South	80.14%	1.09%	7.53%	11.24%
11 – Canterbury	85.26%	0.17%	3.27%	11.30%
12 – West Coast	79.75%	4.44%	6.27%	9.54%
13 – Otago	73.35%	4.38%	3.77%	18.50%
14 – Southland	87.70%	0.70%	3.40%	8.21%
Auckland city	77.78%	11.30%	1.32%	9.59%
Hamilton city	82.96%	4.96%	3.08%	9.01%

10.2.1 People – mode share

²³

https://explore.data.stats.govt.nz/?fs[0]=2023%20Census%2C0%7CTransport%23CAT_TRANSPORT%23&pg=0&fc= 2023%20Census&bp=true&snb=9

Region	%Car	%PT	%Cycle	%Peds
Tauranga city	85.33%	2.92%	4.65%	7.10%
Wellington city	48.62%	28.51%	3.59%	19.29%
Christchurch city	77.74%	5.84%	7.20%	9.22%
Queenstown-Lakes District	79.27%	4.13%	5.77%	10.83%
National total	79.45%	7.46%	2.91%	10.19%

Accessibility to employment

Notes, caveats and limitations:

- Data is sourced from the Accessibility Toolkit (ATK).
- It uses network-based travel times (by mode) between household locations and employment locations. This uses recorded travel times for general traffic, bus timetables for PT and road network distance with a constant average speed applied for cycles (the default used in OpenTripPlanner, which is 5m/s = 18km/h).
- Measure 10.3.1 currently estimates accessibility to employment rather than social destinations. Further work is progressing using ATK to also include access to social destinations, which will be included in subsequent versions of this evidence pack.
- ATK has been used to estimate future accessibility in a very limited way by only looking at changes associated with land-use growth based on population and employment sub-regional projections (while keeping base year travel times by mode). It may be possible to improve this in future releases, where other tools (currently being developed) can provide suitable inputs to ATK regarding future network performance (including travel times).

Region	Mode	Current year (2023)						
		0–5km	5–10km	10+km	0–5km	5–10km	10+km	
01 – Northland	Car	31,292	30,536	35,034	36,807	35,913	40,486	
	PT	16,850	5,845	869	19,200	7,465	1,311	
	Cycle	29,138	19,854	2,377	34,068	24,541	3,369	
02 – Auckland	Car	716,503	536,916	455,088	899,714	670,758	582,690	
	PT	313,788	177,213	124,557	388,878	224,214	151,103	
	Cycle	355,847	280,586	216,239	451,914	355,494	265,792	
03 – Waikato	Car	133,357	133,999	213,804	176,632	177,837	276,406	
	PT	69,881	25,929	9,321	95,049	33,744	12,351	
	Cycle	104,923	82,607	16,567	140,886	112,340	21,034	
04 – Bay of Plenty	Car	79,040	77,841	93,611	103,455	101,584	107,430	
	PT	35,631	23,794	18,017	47,915	32,656	20,225	
	Cycle	58,707	40,240	26,289	77,374	54,337	29,099	
05 – Gisborne	Car	17,327	17,265	25,979	18,308	18,254	27,378	
	PT	9,241	144	147	9,421	137	150	
	Cycle	15,211	10,255	517	15,898	9,799	849	
06 – Hawke's Bay	Car	72,436	71,160	165,625	82,291	81,101	186,660	
	PT	18,570	12,495	21,930	20,305	13,607	26,451	
	Cycle	27,802	26,148	59,881	30,745	29,448	70,751	
07 – Taranaki	Car	36,869	36,779	81,917	41,180	40,985	91,527	
	PT	17,946	6,379	3,989	19,839	7,537	4,939	
	Cycle	27,594	21,814	5,315	30,784	26,806	6,171	

10.3.1 Access to key social destinations (all modes)

08 – Manawatū-	Car	63,400	60,858	116,324	70,215	68,118	129,915
Whanganui	PT	42,455	8,809	12,769	47,710	12,863	14,373
	Cycle	49,725	27,467	15,275	55,486	31,480	16,815
09 – Wellington	Car	226,937	203,306	257,735	254,242	227,977	286,594
	PT	149,015	87,351	100,318	169,490	97,902	112,643
	Cycle	160,012	138,296	82,987	178,699	153,837	93,008
10 – Top of the South	Car	59,509	39,238	43,526	65,205	43,653	48,604
	PT	33,554	20,850	2,236	36,531	23,406	2,550
	Cycle	48,104	34,767	5,135	52,973	39,147	5,744
11 – Canterbury	Car	246,820	237,377	350,704	298,103	286,139	440,946
	PT	135,521	83,670	25,420	164,523	99,853	33,350
	Cycle	197,173	163,672	46,480	238,400	196,568	59,540
12 – West Coast	Car	6,225	6,455	14,589	5,843	6,196	13,893
	PT	3,757	183	1,862	3,445	210	2,326
	Cycle	5,537	4,664	3,015	5,099	4,604	3,432
13 – Otago	Car	59,213	58,364	112,598	62,075	61,521	128,941
	PT	45,898	27,674	13,916	48,301	33,897	16,699
	Cycle	53,343	41,614	12,458	55,959	47,303	15,473
14 – Southland	Car	32,733	33,106	69,145	34,463	34,638	71,342
	PT	20,598	10,281	2,169	21,320	13,138	2,138
	Cycle	27,027	22,387	4,685	28,399	26,232	4,374
National	Car	1,781,661	1,543,200	2,035,679	2,148,533	1,854,674	2,432,812
	PT	912,705	490,617	337,520	1,091,927	600,629	400,609
	Cycle	1,160,143	914,371	497,220	1,396,684	1,111,936	595,451

Appendix B: Intervention Catalogue

As part of the PIE programme, NZTA is developing the Intervention Catalogue (IC) tool, which compiles a wide range of empirical data relating to the implementation of transport projects and how effective they have been in achieving the intended outcomes. We'll continue to add to this over time, using data from benefit realisation associated with the investment logic mapping (ILM) process.

An AI interface for supporting queries and providing relevant evidence is currently being investigated.

For this evidence pack, a limited subset of data (related to 80 interventions) based on the <u>KonSULT</u> knowledgebase maintained by the University of Leeds in the UK, on sustainable urban land use and transport has been made available to demonstrate how IC might be applied to explore and identify the effectiveness of various interventions as part of the option formulation process.

Effectiveness is reported using a simple qualitative 1–5 scale that is indicative rather than absolute, and results may vary based on context.

The screenshot in Figure 1 shows the interventions we extracted from the KonSULT knowledgebase. This data is available in the summary spreadsheet: <u>Extract-of-IC-KonSULT-data-(interventions-typology).xlsx</u>.

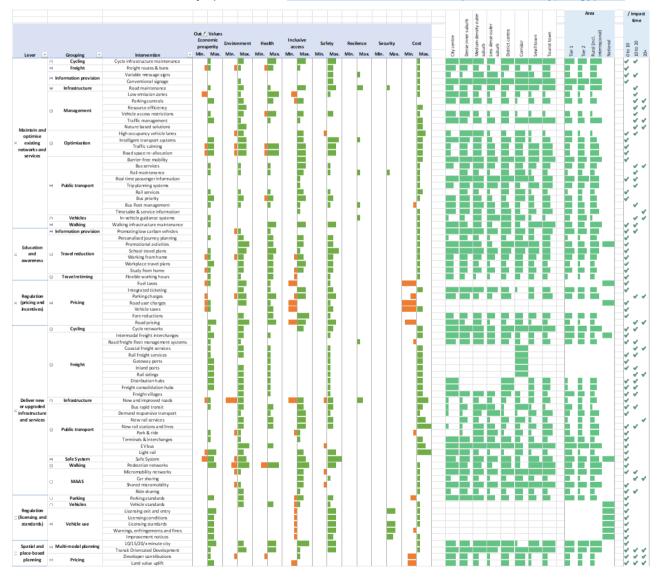


Figure 1: Extract of IC KonSULT data

We've used the data shown in Figure 1 to create a draft interactive tool (<u>Spreadsheet-deficiency-to-intervention-example.xlsx</u>) that allows users to explore the effectiveness and trade-offs associated with a range of interventions that are associated with a user-specified list of issues or deficiencies.

The tables shown in the screenshots below are examples of how the tool can be used (and is not necessarily recommending any of the interventions currently selected).

User Inputs	Intervention Catalogue	tion Catalogue Intervention Catalogue				5) Review liklely effectiveness of se		
Issue/Deficiency	Intervention Group	IC Interventions	IC Lever		Effectiveness	Cost		
1) User to provide list of issues/deficencies below	2) User drop down menus to explore availble Groups	3) User drop down menus to explore Interventions in Group		Area	(1-5)	Min.	Max.	
Consolidate growth, shorten trip lengths, co locating transport hubs with community services	cating Regulation (pricing and incentives) Public transport fare reductions		Pricing	Tier 1	3	0	0	
Design and Planning - adaptable 'scenarios-based' (defend, accommodate, retreat), identify critical routes, improve operational responses to events	Spatial and place-based planning	Design and Planning	Resiliance	Tier 1	0	0	0	
perceived safety (incl. crime)	Deliver new or upgraded infrastructure and services	Safe system approach Safe System		Tier 1	4	0	0	
prioritise low risk low cost maintenance projects	Maintain and optimise existing networks and services	Maintaining the existing road network level of Infrastructur service		Tier 1	3	0	1	
Implement high quality improvements that bring about mode change	Maintain and optimise existing networks and services	Conversion of road capacity to shared and active modes	Optimisation	Tier 1	2	0	2	
perceived safety (incl. crime)	Deliver new or upgraded infrastructure and services	Safe system approach Safe System		Tier 1	4	0	0	
rapid transport network	Spatial and place-based planning	Spatially integrated land use and transport networks	Multi-modal planning	Tier 1	4	0	1	
Improved services	Deliver new or upgraded infrastructure and services	Fixed line mass public transport	Public transport	Tier 1	3	0	5	
Road pricing	Regulation (pricing and incentives)	Time and distance based charges	Pricing	Tier 1	2	-4	0	
PT Fares	Regulation (pricing and incentives)	Public transport fare reductions	Pricing	Tier 1	3	0	0	
Road safety plans, safe speed limits, reduce dangerous behavior	Deliver new or upgraded infrastructure and services	Safe system approach	Safe System	Tier 1	4	0	0	
Encourage Evs (low emission zones)	Maintain and optimise existing networks and services	Banning polluting vehicles from a defined area	Management	Tier 1	2	0	1	
Encourage active modes	Deliver new or upgraded infrastructure and services	Networks for small, low powered, low speed transport devices	MAAS	Tier 1	4	0	1	
Encourage active modes	Education and awareness	School based travel behaviour change	Travel reduction	Tier 1	4	0	1	
Accessible infrastructure	Deliver new or upgraded infrastructure and services	On call shared transport	Public transport	Tier 1	2	0	1	
Adaptable approach to road space management (e-scooters)	Deliver new or upgraded infrastructure and services	Networks for small, low powered, low speed transport devices	MAAS	Tier 1	4	0	1	
More Freq Rail &PT Services	Deliver new or upgraded infrastructure and services	New rail services on existing lines	Public transport	Tier 1	1	0	3	
Bus Priority	Maintain and optimise existing networks and services	Reduce journey times and improve reliability of bus services	Public transport	Tier 1	3	0	1	

Figure 2: Example of using tool to explore overall effectiveness and cost of potential interventions based on a list of user specified deficiencies or issues (entered in the first column)

User Inputs	Intervention Catalogue					MoT Outc	ome(s)							
Issue/Deficiency	IC Interventions		Economic prosperity Environment		nment			Inclusio	Inclusive access		Safety		Resilience	
1) User to provide list of issues/deficencies below	3) User drop down menus to explore Interventions in Group	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Consolidate growth, shorten trip lengths, co locating	Public transport fare reductions													
transport hubs with community services		0	0	0	2	0	2	0	4	0	1	0	0	
Design and Planning - adaptable 'scenarios-based'	Design and Planning													
(defend, accommodate, retreat), identify critical														
routes, improve operational responses to events														
		0	0	0	0	0	0	0	0	0	0	0	0	
perceived safety (incl. crime)	Safe system approach													
		-2	2	-1	3	0	0	0	3	0	5	0	0	
	Maintaining the existing road network level of													
	service	0	1	0	2	0	1	0	3	0	3	0	2	
	Conversion of road capacity to shared and active													
	modes	-1	2	-1	3	-1	4	0	3	0	3	0	0	
perceived safety (incl. crime)	Safe system approach													
		-2	2	-1	3	0	0	0	3	0	5	0	0	
rapid transport network	Spatially integrated land use and transport												-	
	networks	0	3	0	2	0	3	0	4	0	3	0	0	
Improved services	Fixed line mass public transport													
Dead asisian	Time and distance based charges	-1	3	0	2	0	0	-3	2	0	3	0	0	
	Public transport fare reductions	0	0	0	4	0	2	-3	4	0	1	0	0	
	Safe system approach	0	0	0	2	U U	4		-4	0	1	0	U	
dangerous behavior	Sale system approach	-2	2	-1	3	0	0	0	3	0	5	0	0	
-	Banning polluting vehicles from a defined area	-2	2	-1	3	U U			5	ľ	5		0	
Encourage 245 (fow emission zones)	building politicing vehicles from a defined area	-2	0	0	1	0	4	-2	0	0	1	0	0	
Encourage active modes	Networks for small, low powered, low speed	-	Ŭ		1	Ĭ		-	Ŭ	-		Ŭ	0	
	transport devices	0	0	-1	1	0	0	0	2	-1	0	0	0	
	School based travel behaviour change	0	1	0	3	0	3	0	1	0	4	0	0	
	On call shared transport													
		0	0	0	1	0	1	0	3	0	1	0	0	
Adaptable approach to road space management	Networks for small, low powered, low speed													
(e-scooters)	transport devices	0	0	-1	1	0	0	0	2	-1	0	0	0	
More Freq Rail &PT Services	New rail services on existing lines													
		0	0	0	2	0	2	0	3	0	2	0	0	
Bus Priority	Reduce journey times and improve reliability of													
	bus services	0	2	0	2	-1	2	0	3	0	2	0	0	

Figure 3: Example of using tool to explore overall trade-offs between outcomes associated with potential interventions