

Evidence pack

Marlborough

October 2025

DRAFT Version 1.3

Copyright information

Copyright ©. This copyright work is licensed under the Creative Commons Attribution 4.0 International licence. In essence, you are free to copy, distribute and adapt the work, as long as you attribute the work to NZ Transport Agency Waka Kotahi (NZTA) and abide by the other licence terms. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Disclaimer

NZTA has endeavoured to ensure material in this document is technically accurate and reflects legal requirements. Any discussion or commentary on the region is an NZTA view. However, the document does not override governing legislation. NZTA does not accept liability for any consequences arising from the use of this document. If the user of this document is unsure whether the material is correct, they should refer directly to the relevant legislation and contact NZTA.

More information

NZ Transport Agency Waka Kotahi Published June 2025 Version 1.0

If you have further queries, call our contact centre on 0800 699 000 or write to us:

NZ Transport Agency Waka Kotahi Private Bag 6995 Wellington 6141

Version #	Date Released	Changes Made	Changes Made By
DRAFT 1.0	30/06/2025	First release	Evidence Pack Development Team for NLTP Team
DRAFT 1.1	30/07/2025	Addition of 'DRAFT' to the Pack for clarity as to its status of a work in progress.	Evidence Pack Development Team for NLTP Team
DRAFT 1.2	01/08/2025	Addition to disclaimer that 'any discussion or commentary on the region is an NZTA view'	Evidence Pack Development Team for NLTP Team
DRAFT 1.3	14/10/2025	Revisions and corrections to narrative in some regions due to regional feedback, replacement of Top of the South evidence pack with separate Nelson/Tasman and Marlborough evidence packs. Clarification in some sections to reflect perspective from NZTA as the state highway manager.	Evidence Pack Development Team for NLTP Team

Contents

INTRODUCTION	4
What's in the evidence pack?	4
What's in this Marlborough section?	4
MARLBOROUGH OVERVIEW	5
STRATEGIC MEASURES – CURRENT AND FUTURE	8
Healthy and safe people	8
Resilience and security	
Economic prosperity	
Environmental sustainability	
Inclusive access	
Interdependencies between outcomes	
CURRENT AND FUTURE CHALLENGES	
National context	
Regional context of the state highway network	
State highway hotspots	
FOCUSING EFFORT	
Longer-term investment focus	
Short-term investment focus	
Potential interventions	25
APPENDIX A: DATA SOURCES FOR THE STRATEGIC MEASURES	27
Healthy and safe people	
Resilience and security.	
Economic prosperity	
Environmental sustainability	34
Inclusive access	36
APPENDIX R. INTERVENTION CATALOGUE	30

Introduction

This Marlborough section is part of the *Evidence pack*, which intended to help in the preparation of the strategic front end of regional land transport plans (RLTPs).

It does this by providing a consistent set of data and information setting out the current and future state of New Zealand's transport system at a national and regional level, and what interventions are likely to be effective to address identified deficiencies.

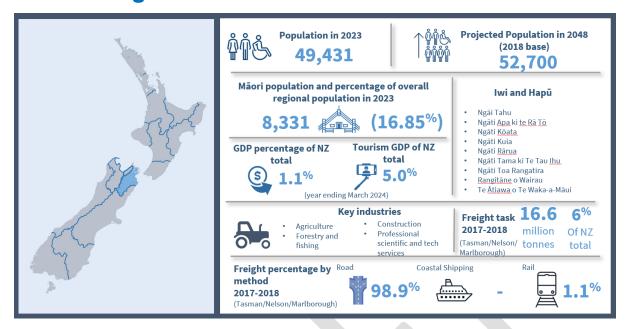
This iteration is the first step in the collaborative development with the sector of consistent and comprehensive evidence and information. For future iterations we will be drawing on your feedback to iteratively improve it and close any data and analysis gaps.

For more background information about the evidence pack, see the <u>Introduction and national</u> summary.

What's in the evidence pack?

The complete evidence pack is available on the <u>Transport Insights portal</u>.

There you will find:


- evidence pack introduction and national summary, which gives you more background to the pack, its purpose and where the information and data are sourced from, and provides an overview for the whole country
- a section for each region, with data and information (calculated as strategic measures) specific to that region, and discussion of how it fits into the national network.

What's in this Marlborough section?

Each regional section follows the same structure:

- Marlborough overview a brief overview of the region.
- Strategic measures which looks at how the region currently rates against the 14 strategic measures from the Land Transport Benefits Framework, and how it's expected to change over time.
- Current and future challenges specific issues for the region to address.
- **Focusing effort** identifies key areas to focus investment in the short and longer term and includes targeted suggestions of potential interventions.
- Appendices data sources for the strategic measures and more information on potential interventions.

Marlborough overview

The Marlborough region is in the north-east of the South Island and includes the Marlborough Sounds, mountain ranges including the Inland Kaikōura Range, the Richmond Range, and the Black Birch Range. The largest urban centre is Blenheim and Picton serves as a key connection point between the North and South Islands.

The region has a population of 49,431, with 28,733¹ residents living in Blenheim. Marlborough is also home to two island communities on D'Urville Island and Arapaoa Island. The population is ageing faster than the national average. By 2043, it is projected that one-third of Marlborough's population will be aged 65 or older.² This demographic shift is expected to influence future transport needs like accessibility and mobility options.

Māori make up 16.85 percent of the region's population, below the national average of 19.6 percent.³ The asset base of the Māori economy in the top of the south, including Marlborough (the Te Tau Ihu Rohe) is valued at \$4.02 billion.⁴ The majority of Māori assets are concentrated in the primary industries and public and professional services sectors.

Marlborough's economy is based on primary production. It is New Zealand's largest grape-growing region, with 72 percent of the total vineyard area,⁵ and producing 85 percent of New Zealand's total export wine production.⁶ Aquaculture is also significant, with Marlborough contributing 80 percent of New Zealand's commercially grown seafood.⁷

¹Stats NZ. (2024). *Blenheim urban rural area summary – Place and ethnic group summaries*. Accessed October 2025 from https://tools.summaries.stats.govt.nz/places/UR/blenheim#1012

² Stats NZ. (2017, October 19). Subnational population projections: 2013 (base)–2043 update. Accessed October from https://www.stats.govt.nz/information-releases/subnational-population-projections-2013base2043-update/

³ Stats NZ. (2023). *Place and ethnic group summaries – Marlborough District*. Tatauranga Aotearoa Stats NZ. Accessed October 2025 from https://tools.summaries.stats.govt.nz/places/TA/marlborough-district

⁴ Business and Economic Research Limited (BERL). (2025, March). *Te Ōhanga Māori 2023: The Māori economy*. Ministry of Business, Innovation and Employment. Accessed October 2025 from https://www.berl.co.nz/te-ohanga-maori

⁵ Stats NZ. (n.d.). *Imports and exports*. Accessed October 2025 from Accessed October 2025 from https://www.stats.govt.nz/topics/imports-and-exports/

⁶ Marlborough District Council. (2024). *Regional Land Transport Plan 2024–2034*. Accessed October 2025 from https://www.marlborough.govt.nz/services/roads-and-transport/regional-land-transport-plan/regional-land-transport-plan-2024-34

⁷ Marlborough District Council. (n.d.). *Marine farming*. Marlborough District Council. Accessed October 2025 from https://www.marlborough.govt.nz/environment/coastal/marine-farming

Most freight is moved by road, with SH1 serving as the main corridor. Rail is used for bulk freight, and Port Marlborough in Picton supports both freight and passenger movements. Weld Pass is identified as a critical freight route with heavy vehicles navigating a road that is narrow and windy. The use of heavy vehicles in the region is accelerating pavement wear, especially on logging routes

KiwiRail is currently operating two ferries Kaitaki and Kaiārahi between Wellington and Picton for passengers and freight.⁸ While these are not rail-enabled, to maintain rail connectivity across Cook Strait, KiwiRail uses a road bridging system, where freight is transferred by truck between rail terminals and ferries. This setup will continue until 2029, when two new rail-enabled ferries are introduced, restoring direct rail-to-ship freight capability.

The transport network includes approximately 1,930km of roads including 260km state highways, and 1,560km local roads, of which 630km are unsealed. There are also about 110km of roads managed by the Department of Conservation. The rail line between Picton and Kekerengu is part of the Main North Line which runs to Christchurch and is used for freight and seasonal passenger services.

Public transport is limited. The Blenheim Bus Service operates two routes that run limited loops during the week between 9am and 3pm. A hail and ride bus service connects Blenheim and Picton three days a week.

Walking and cycling infrastructure in Blenheim and Picton is present but fragmented, with gaps in connectivity and limited facilities in some areas. ¹⁰ Cycling facilities are focussed on recreation rather than commuters. In urban areas many streets have footpaths on only one side and lack tactile paving for the visually impaired. The terrain and urban layout offer potential for increased use of active transport modes.

Several areas within the Marlborough Sounds do not have road access and landowners use boats and barging to access the area and to transport goods. They can provide a useful alternative for goods, especially logs, to narrow and fragile roads that otherwise access the Sounds.

The region has experienced significant disruption from natural hazards. Storm events in 2021, 2022 and 2025 caused numerous faults in the Marlborough Sounds road network.¹¹ The Marlborough Sounds Future Access Study includes a long-term recovery and resilience programme with preferred repairs and improvements and a hazard adaptation pathway.

The RLTP discusses multiple transport challenges including vulnerability to disruptions and long-term closures, limited route options in Blenheim due topographical constraints, rising maintenance costs leading to reduced service levels, and safety concerns, particularly on rural roads, and on urban roads for cyclists and at intersections.

_

⁸ KiwiRail. (2025, April 30). *Aratere to retire as New Zealand's new ferries project gets underway*. KiwiRail. Accessed October 2025 from https://www.kiwirail.co.nz/media/aratere-to-retire-as-new-zealands-new-ferries-project-gets-underway/

⁹ Marlborough District Council. (2024). *Regional Land Transport Plan 2024–2034*. Accessed October from https://www.marlborough.govt.nz/services/roads-and-transport/regional-land-transport-plan-2024-34

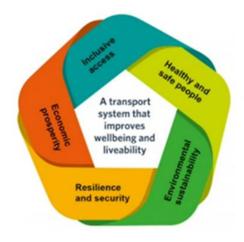
Marlborough District Council. (2024). Regional Land Transport Plan 2024–2034. Accessed October 2025 from https://www.marlborough.govt.nz/repository/libraries/id:2ifzri1o01cxbymxkvwz/hierarchy/documents/services/roads-and-transport/roads-rltp-documents/2024-34 rltp/MDC-2024-34 RLTP.pdf
 Marlborough District Council. (2024). Regional Land Transport Plan 2024–2034. Accessed October 2025 from

¹¹ Marlborough District Council. (2024). *Regional Land Transport Plan 2024–2034*. Accessed October 2025 from https://www.marlborough.govt.nz/repository/libraries/id:2ifzri1o01cxbymxkvwz/hierarchy/documents/services/roads-and-transport/roads-rltp-documents/2024-34_rltp/MDC-2024-34_RLTP.pdf

Planned investment focuses on:12

- Recovery and resilience improvements in the Marlborough Sounds including SH1 resilience improvements, sea level rise response, coastal hazards study and flood modelling. Reviewing heavy vehicle use in on narrow roads in the Sounds.
- Low cost, low risk improvements on state highways especially to support resilience and including safety improvements in Weld Pass. There are also some low cost, low risk improvements for walking, cycling and public transport.
- Maintenance with a focus on renewals and improvements to preserve service levels.
- Improvements to port access on SH1 in Picton and safety improvements on SH6 between Blenheim and Woodbourne.

¹² Waka Kotahi NZ Transport Agency. (2024, April 12). *State Highway Investment Proposal 2024–34*. Accessed October from https://nzta.govt.nz/assets/resources/state-highway-investment-proposal-2024-34/state-highway-investment-pr


Strategic measures – current and future

This section provides tables summarising the 14 strategic measures in relation to this region. The data and evidence used to produce these results is included in Appendix A.

The 14 strategic measures are a subset of 60+ measures included in the <u>Land Transport Benefits</u> <u>Framework</u>. They have been selected to provide a coarse but practical overview of the 5 Transport Outcomes, as shown in the diagram.

The tables provide indicative current and future values for the 14 strategic measures (grouped by outcome), to understand how each measure (and therefore outcome) is likely to change if there is no significant investment (beyond that already committed).

More detail about the measures can be found in the Land Transport Benefits Framework measures manual.

Healthy and safe people

Benefit framework measure	Units	Current (2023/24)	Future (2048)	Change
1.1.1 Collective risk (crash density)	Average annual fatal and serious per kilometre of road section	NA	NA	NA
1.1.3 Deaths and serious injuries (DSIs)	Number of DSIs (annual)	26	30	4 (+315%)
1.1.4 Personal risk (crash rate)	Average annual DSI per 100 million vehicle kilometres travelled	3.843	3.843	0 (0%)
1.2.1 Road assessment rating – roads	Infrastructure risk rating (applies to both current and future)	High: 40.79% Medium-high: 19.50% Medium: 25.07% Low-medium: 13.23% Low: 1.41%		N/A

Insights

• If there is no significant investment (beyond that already committed), crash density and the number of deaths and serious injuries (DSI) in Marlborough are projected to increase significantly by 2048. Projections are unavailable for other strategic measures for safety but indicate the Marlborough currently performs poorly for this outcome on those strategic measures.

- Collective risk (crash density) shows where the biggest difference can be made in terms of absolute numbers of deaths and serious injuries and is affected by population size and transport mode chosen. The average annual fatal and serious crashes per kilometre of road section in this region is currently the fifth highest of all regions. If there is no significant investment (beyond that already committed), crash density is projected to increase by 30 percent by 2048.
- Marlborough has the fifth-lowest number of DSI of all regions, with about 4 percent of the national total and lower than the average number of DSI of all regions. The number of DSI is projected to increase by 31 percent by 2048.
- Personal risk (crash rate) highlights areas where a crash is more likely to occur based on use of the road network. The average annual DSI per 100
 million vehicle kilometres travelled (VKT) in Marlborough is currently more than the national average and in the middle of the range by average of all
 regions.
- Infrastructure risk rating (IRR) describes the underlying level of risk a road presents to an individual road user based on key physical and operational attributes. The proportion of the Marlborough's roads rated as being at medium-high and high risk (that is, with DSI per 100 million VKT equal to or greater than 8) is 8 percent more than the country as a whole and in the middle of the range of all regions.

Resilience and security

Benefit framework measure	Units	Current (2023/24)	Future (2048)	Change
4.1.1 Availability of a viable alternative to high-risk and high-impact route	Percentage of high-risk, high-impact route with a viable alternative	Not included in this release		
4.1.2 Level of service and risk (note that for this evidence pack this data is from the National Resilience Assessment Tool (NRAT) and includes only state highways)	Number of identified sites in region by combined risk rating (future, geological and hydrological)	Low: 17 Med: 8 High: 8 Critical:5 Not yet rated: 39	N/A	N/A

Insights

- If there is no significant investment (beyond that already committed), the Marlborough is projected to have lowest number of future (emerging) risks. The low proportion of high and critical risks indicate Marlborough currently performs well for this outcome.
- Hazard events at identified risk sites can lead to unplanned closures of the state highway network, impacting network resilience. The Marlborough is
 mostly at risk from geological events (rockfall, overslips, underslips), which make all 77 risk resilience sites in the region.

• High and critical risks make up 34 percent of all risks in the region that have been rated to date. The proportion of high and critical risks is 4 percent higher than the national rate and the seventh highest of all regions.

Economic prosperity

Benefit framework measure	Units	Current (2024)	Future (2048)	Change
5.1.2 Travel time reliability – motor vehicles (note for this evidence pack, the data only relates to state highway traffic monitoring system (TMS) sites)	Calculated using coefficient of variation (CoV); standard deviation of travel time divided by average minutes travel time Rate: High <0.3, Medium 0.3–0.6, Low >0.6)	Low: AM 3% Day 0% Med: AM 11% Day 0% High: AM 86% Day 100%	Low: N/A% Med: N/A% High: N/A%	Low: N/A% Med: N/A% High: N/A%
5.1.3 Travel time delay (note, data is from National Network Performance (NNP) model, which is currently limited to state highway TMS sites)	Difference between average travel time during AM peak and average travel time during the inter-peak in minutes per kilometre (by mode) as a percentage	Car: 2% PT: N/A Cycle: N/A	Car: N/A PT: N/A Cycle: N/A	Car: N/A PT: N/A Cycle: N/A
5.2.2 Freight – mode share value	Percentage of value for each mode	Not included in this release		
5.2.3 Freight – mode share weight	Percentage of weight for each mode	Road: 91% Rail: 9%	Road: 93% Rail: 7%	Road: 2% Rail: -2%

Insights

- If there is no significant investment (beyond that already committed), the proportions of freight carried by road and rail in Marlborough are projected to increase slightly for road and decrease slightly for rail by 2048. A projection is unavailable for travel time reliability, but the good travel time reliability in Marlborough compared to the national rate and other regions indicate this region currently performs well for this strategic measure.
- Travel time reliability can impact the efficient movement of people and goods. Three percent of the state highway network in Marlborough (limited to data based on where we have TMS sites) has poor travel time reliability (that is, a high CoV), compared to 6 percent for the country as a whole and in the middle of the range of all regions. Unexpected events on the state highway network impacts travel time reliability in Marlborough. The capability to estimate travel time reliability for future years is still being developed and is intended to be included in later iterations of the evidence pack.
- While road freight is more efficient over short distances, rail freight is safer, lower emissions and more efficient over longer distances. 91 percent of freight in Marlborough is carried by road, 4 percent higher than the national average, and the fifth-highest rate of all regions. 9 percent of freight in Marlborough is carried by rail, 4 percent lower than the national rate and the fifth-lowest rate of all regions.

• If there is no significant investment (beyond what is already committed), the share of freight carried by road is projected to increase by 2048, consistent with the trend for the country as a whole. This reflects forecast higher demand for imports and consumer goods, while primary sector exports are forecast to remain flat.

Environmental sustainability

Benefit framework measure	Units	Current (2023)	Future (2048)	Change
8.1.1 Greenhouse gas emissions (all vehicles)	Annual tonnes of CO ₂ equivalents (CO ₂ -e) emitted	0.21 m	0.16 m	-0.06 m (-26%)
8.1.3 Light vehicle use impacts	Annual light vehicle kilometres travelled (light VKT)	558 m	597 m	+39 m (+7%)

Insights

- If there is no significant investment (beyond that already committed), Marlborough's greenhouse gas (GHG) emissions from all vehicles are projected to reduce significantly (primarily due to a highly uncertain assumed level of vehicle fleet electrification) and light vehicle VKT is projected to increase slightly.
- Land transport is a major contributor to GHG emissions. Marlborough accounts for 2 percent of transport GHG emissions in New Zealand. This proportion of the national total is the third fifth-smallest contribution of all regions. If there is no significant investment (beyond what is already committed), both the Marlborough's volume of GHG emissions and the proportion of the national total are projected to decrease by 2048 primarily through electrification of the vehicle fleet (as forecast using the Ministry of Transport Vehicle Fleet Model (VFM)) the proportion of the national total will remain stable. This assumed level of electrification has high uncertainty and is a major factor affecting GHG emissions; and therefore, the 26 percent decrease needs to be considered in this light.
- Light vehicle VKT is currently the largest source of transport GHG emissions. Electrification of the light vehicle fleet could be complemented by mode shift to public transport and/or active modes to maximise a reduction of GHG emissions. Marlborough accounts for 1 percent of light vehicle VKT in New Zealand. This proportion is one of the lowest contribution of all regions. If there is no significant investment (beyond that already committed), Marlborough's volume of light vehicle VKT is projected to increase and the proportion total is projected to remain unchanged by 2048.

Inclusive access

Benefit framework measure	Units	Current	t (2023)			Future ((2048)			%Chan	ge		
10.2.1 People – mode share	Percentage by mode (Census (2023) journey to work and education)	PT: Cycle:	34.05% 0.34% 5.48% 10.13%			_				_			
10.3.1 Access to key social destinations (all modes)	Number of jobs (x1000) accessible by mode in AM peak (car 40 min, PT 45 min, cycle 45 min) and distance from city centre (km)	Car: PT: Cycle:	0-5 20 8 15	5-10 190 0.1 7	10+km 32 1 3	Car: PT: Cycle:	0-5 21 9 16	5-10 21 0.1 10	10+km 35 1 3	Car: PT: Cycle:	0-5 8% 7% 10%	5-10 8% 4% 44%	10+km 9% 18% 21%

Insights

- If there is no significant investment (beyond that already committed), the proportion of jobs more than 5km from central Blenheim accessible by public transport and cycling is projected to increase by 2048. A projection is unavailable for mode share for journeys to work and education, but the high proportion of journeys by car in this region compared to the national rate and other regions indicate Top of the South currently performs poorly for this outcome.
- The availability of public and shared transport services and active mode infrastructure can reduce car dependence, which can be a barrier to access for those who are on low incomes or unable to drive. Journeys to work and education in Marlborough by all modes are 2 percent of the national total, and this proportion is in the lowest quarter range of all regions.
- Journeys by car in Marlborough are five percent higher than the national rate and the sixth-lowest rate in the country by all regions.
- Public transport use is 7 percent lower than the rate for the country as a whole one of the lowest in the country. The proportion of people cycling in Marlborough is 3 percent higher than the national rate and the fourth highest of all regions.
- The proportion of people walking in Marlborough is one percent lower than the national rate and the middle range of all regions
- The low provision of public and shared transport services and infrastructure in urban areas impacts mode share for people in Marlborough.
- The accessibility of jobs by modes other than car increases people's ability to work. There are many more jobs accessible by car than other modes in the Marlborough

- Within 5km of central Blenheim, accessibility by car is higher than for cycling and approximately double that for public transport. For locations further out, the difference is greater for public transport. If there is no significant investment (beyond that already committed), the proportions of jobs more than 5km from the town centres accessible by public transport and cycling are projected to remain relatively stable by 2048.
- The lowest income households spend a greater proportion of their incomes on transport. 13 These factors combine to result in transport poverty (where people lack adequate access to affordable and reliable transport, hindering their ability to participate in essential activities such as work).

Interdependencies between outcomes

- Addressing the current and future challenges for one transport outcome can have negative impacts on others. On the other hand, it is possible to take an
 approach to each outcome that makes a positive impact on the others
- For example, improving the quality of key state highways to address reduce safety risk (see healthy and safe people) could be done in a way to address current geological risks and the future impacts of climate change (see resilience and security). Safety risks could be reduced further by implementing a compact urban form and increasing the coverage of public transport services further from the centre of each main town, and more shared transport in dispersed areas, which can improve access to work and education (see inclusive access). This could improve the efficient movement of goods (see economic prosperity) and reduce emissions, mitigating the long-term impacts of climate change (see environmental sustainability).

¹³ Te Manatū Waka Ministry of Transport (2022). *The distributional impacts of transport-related carbon policy*. https://www.transport.govt.nz/assets/Uploads/The-Distributional-Impacts-of-Transport-final-report-005.pdf

Current and future challenges

To achieve a land transport network that is safe, efficient and effective for Marlborough region, it's important to understand it in combination with the needs and lives of the region's people and the unique natural and built environment.

National context

New Zealand's transport networks are extensive and vital for the country's connectivity and economic prosperity. The state highway network spans about 11,750km,¹⁴ while the local road network covers about 83,368km.¹⁵ Additionally, the rail network consists of around 4128km of rail lines.¹⁶

Maintaining existing networks

Maintaining such a vast network requires significant effort. Annually, 5–10 percent of the road network (4750km to 9500km) needs resurfacing or rebuilding.¹⁷ The network includes nearly 4200 bridges¹⁸ on state highways and about 15,000 on local roads.¹⁹ Urban growth and higher traffic volumes, especially of heavy vehicles, increase maintenance needs, which strains budgets. Neglecting maintenance can lead to safety risks, higher long-term costs, and disrupted connectivity.²⁰

Looking ahead, future challenges are expected to intensify. Climate change is likely to increase the frequency and severity of extreme weather events, such as flooding and heatwaves, which can damage infrastructure and accelerate wear and tear. Technological advancements, such as the rise of electric and autonomous vehicles, may require new types of infrastructure and maintenance protocols. Additionally, population growth and urban sprawl will create pressure to further expand the network, which will lead to increasing the scale and complexity of maintenance operations.

Access to opportunities and enabling the efficient movement of freight around the country

The transport system underpins economic and social wellbeing, ensuring access to jobs, education, healthcare, and efficient freight movement. Remote and rural areas face significant access challenges, especially during adverse weather. These challenges include a lack of alternatives to private vehicle trips as public transport services are not a viable alternative because of coverage and frequency. In addition, there is a lack of redundancy in parts of the land transport system – some places rely on one or 2 critical lifelines to stay connected.

Looking ahead, existing access challenges in remote and rural areas will be exacerbated by the impacts of climate change and demographic change. The population is expected to remain static or decline in smaller, rural, and remote districts. In some areas, people aged over 65 are expected to make up more than 35 percent of the population. The affordability of local government rates increases will be an issue in these areas. Network resilience will be further challenged as damage caused by climate change becomes more frequent, outages last longer and repair costs increase. Rural and

NZTA (n.d.). State highway frequently asked questions. Accessed October 2025 from https://www.nzta.govt.nz/roads-and-rail/research-and-data/state-highway-frequently-asked-questions/
 Ministry of Transport (n.d.). Statistics and insights. Accessed October 2025 from https://www.transport.govt.nz/statistics-and-insights

¹⁶ Stats NZ (n.d.). Transport. Accessed October 2025 from https://www.stats.govt.nz/topics/transport
¹⁷ NZTA (n.d.). Road management and maintenance. Accessed October 2025 from https://nzta.govt.nz/roads-and-rail/management-and-maintenance/

¹⁸ NZTA (n.d.). Bridges and structures. Accessed October 2025 from https://www.nzta.govt.nz/roads-and-rail/bridges-and-structures/

¹⁹ Figure.NZ (n.d.). Number of bridges on local roads in New Zealand. Accessed October 2025 from https://figure.nz/chart/nHM7UwJuYIrWnLdT

²⁰ Government of New Zealand (n.d.). Government Policy Statement on land transport 2024–34. Accessed October 2025 from https://www.transport.govt.nz/assets/Uploads/Government-Policy-Statement-on-land-transport-2024-FINAL.pdf

coastal communities may become increasingly isolated and have difficulty accessing essential services – this may particularly impact Māori.

Freight is a key part of economic activity and is fundamental to making places great to live (liveability).²¹ The efficient movement of freight is essential for economic productivity. Current freight inefficiencies such as delays, detours and highly variable travel times can increase costs by up to 20 percent.²²

Looking ahead, total freight volume is expected to increase by 39 percent by 2053.²³ The location of freight origin and destination may change. A growing population in the largest urban areas means more goods will need to be moved to these locations, and industry and population concentration is occurring in the upper North Island. Climate change is expected to change the nature and location of primary production and increase the frequency of extreme weather events, disrupting transport networks, isolating communities, and affecting freight reliability.²⁴ Technological shifts, including the rapid growth of e-commerce and the transition to low-emission freight vehicles, will require significant infrastructure upgrades and new logistics strategies to ensure efficiency and sustainability.²⁵

Resilience to natural hazards and climate change

New Zealand faces significant natural hazard risks, including earthquakes, floods, and cyclones, worsened by climate change. The land transport system has always been exposed to natural hazard risks, with minor closures or delays through small scale events like slips and localised flooding common. However, the network is increasingly exposed to national and regional scale events such as Cyclones Hale and Gabrielle and the Kaikoura earthquakes that caused widespread and significant damage.²⁶ For instance, Cyclone Gabrielle alone caused damage estimated at \$13.5 billion.²⁷

Recovery from small events is quick, but larger events, such as Cyclone Gabrielle, cause extensive damage and long recovery times. The state highway network performs critical lifeline functions for communities, and repeated disruption to these functions impacts communities' access to the services they need.

Looking ahead, the land transport system will have to adapt to escalating impacts from natural hazards and climate change now and into the future. These impacts include sea-level rise and ongoing changes in the physical environment, as well as increasingly severe and frequent climate-related events such as storms, flooding, droughts, and wildfires.²⁸ The probability of an Alpine Fault earthquake occurring in the next 50 years is 75 percent, and there is a 4 out of 5 chance that it will be

NZ Transport Agency Waka Kotahi

_

²¹ Auckland Transport (2020). Auckland freight plan. Accessed October 2025 from https://at.govt.nz/media/1983982/auckland-freight-plan.pdf

²² Ministry of Transport (2023). Aotearoa New Zealand Freight and Supply Chain Strategy. Accessed October 2025 from https://www.transport.govt.nz/assets/Uploads/MOT4806 Aotearoa-Freight-and-Supply-Chain-Strategy-p09-v03.pdf

²³ Ministry of Transport (2019). *New Zealand transport outlook – Freight model*. Accessed October 2025 from https://www.transport.govt.nz/assets/Uploads/Data/Transport-outlook-updated/Freight-Model-Version-2-Documentation-20190423.pdf

²⁴ KPMG & The Aotearoa Circle (2024). *Transport sector climate change scenarios: Report on big climate risks to New Zealand's transport sector*. Accessed October 2025 from https://kpmg.com/nz/en/home/media/press-releases/2024/06/report-on-big-climate-risks-to-new-zealand-s-transport-sector.html

²⁵ Ministry of Transport (n.d.). Climate change — emissions work programme. Accessed October 2025 from https://www.transport.govt.nz/area-of-interest/environment-and-climate-change/climate-change

²⁶ Byett, A, et al (2019). *Climate change adaptation within New Zealand's transport system*. Motu Economic and Public Policy Research. Accessed October 2025 from https://www.motu.nz/our-research/environment-and-resources/climate-change-impacts/climate-change-adaptation-within-new-zealands-transport-system

²⁷ NIWA (2024). Cyclone Gabrielle was intensified by human-induced global warming. Accessed October 2025 from https://niwa.co.nz/news/cyclone-gabrielle-was-intensified-human-induced-global-warming

NZTA (2022). Tiro Rangi: our climate adaptation plan 2022–2024. Accessed October 2025 from <a href="https://www.nzta.govt.nz/assets/resources/tiro-rangi-our-climate-adaptation-plan-2022-2024/tiro-rangi-our-climate-adaptation-plan-2022-2024/tiro-rangi-our-climate-adaptation-plan-2022-2024.pdf

a magnitude 8+ event.²⁹ Such an event has the potential to cause severe damage and disruption across the entire South Island, with major consequences for the rest of the country.

These types of impacts will continue and will affect communities and the transport networks that connect them. As damage becomes more frequent, outages last longer and repair costs increase, rural and coastal communities may become increasingly isolated and have difficulty accessing essential services, and this may especially impact Māori. In urban areas, the impacts of climate change on multimodal networks can be complex, widespread and cascade across the land transport system. Interregional connections will also be disrupted.

Congestion and capacity constraints, especially in large and growing cities

New Zealand's road network is a vital part of the country's infrastructure, with significant portions now facing congestion and capacity constraints. This is particularly evident in Auckland, where congestion costs are estimated to range between \$1.3 billion and \$2.6 billion annually.³⁰

The demand for transport in New Zealand has grown rapidly, meaning that in some places the demand exceeds the ability of the transport system to cater for it. This has resulted in frequent congestion across parts of the road and public transport networks, particularly on motorways in Auckland, Tauranga, Wellington, Queenstown and Christchurch. Previously confined to 'rush hour' periods, congestion has steadily lengthened and worsened over time.³¹ Congestion on the local road network is a growing concern, especially in urban areas. Rail network capacity restraints currently affect both public transport services in Auckland and Wellington, and freight movements across the country. Population growth, dispersed land use patterns, and increasing vehicle ownership will continue to contribute to this issue into the future.

Looking ahead, a growing population in the largest urban areas means more people who need to get to work, education, business and entertainment. New Zealand's population is projected to reach over 6 million by the early 2030s, with much of this growth concentrated in urban areas.³² This, combined with dispersed land use and rising vehicle ownership – currently at nearly 0.9 vehicles per person – will further strain transport corridors and worsen congestion.³³ Without significant investment, it is likely congestion will worsen, network productivity will fall, and emissions will rise. Future challenges include adapting for electric and autonomous vehicles, building resilience to climate impacts and reducing emissions through urban planning, mode shift and fleet carbonisation.

Reducing the level of harm to people and the environment

New Zealand's land transport system faces significant safety and environment challenges. In 2024, there were 292 road fatalities, placing New Zealand 7th highest in road deaths per capita among 35 OECD countries.³⁴ Contributing factors include adverse weather, unsafe driving behaviour, and poor road conditions. Rural road fatalities are disproportionately high, accounting for 60 percent of all road deaths, despite rural roads making up only 40 percent of the network.³⁵

NZ Transport Agency Waka Kotahi

2

²⁹ AF8 (2022). *AF8 Programme Strategy 2022–25*. Accessed October 2025 from https://af8.org.nz/media/fpxjy3uu/af8 programme-strategy-2022-25-jul22.pdf

³⁰ NZTA (2013). *The costs of congestion reappraised*. Accessed October 2025 from https://www.nzta.govt.nz/assets/resources/research/reports/489/docs/489.pdf

³¹ NZTA (2024). Significant land transport challenges facing New Zealand. Accessed October 2025 from https://www.nzta.govt.nz/assets/planning-and-investment/nltp/2024/docs/significant-challenges-nltp-2024-27.pdf NZTA (n.d.). Significant land transport challenges facing New Zealand. Accessed October 2025 from https://www.nzta.govt.nz/assets/planning-and-investment/nltp/2024/docs/significant-challenges-nltp-2024-27.pdf NZTA (n.d.). Significant land transport challenges facing New Zealand. Accessed October 2025 from https://www.nzta.govt.nz/assets/planning-and-investment/nltp/2024/docs/significant-challenges-nltp-2024-27.pdf Accessed October 2025 from https://www.nzta.govt.nz/assets/planning-and-investment/nltp/2024/docs/significant-challenges-nltp-2024-27.pdf Accessed October 2025 from https://www.itf-oecd.org/sites/default/files/new-zealand-road-safety.pdf

Air pollution from fossil fuels and particulate matter continues to impact public health, contributing to an estimated 2247 deaths in 2016.³⁶ While low-emission vehicles are essential for reducing transport-related emissions, they are not a complete solution. A broader systems approach – encompassing clean energy, sustainable manufacturing, and urban planning – is needed to fully address environmental harm.³⁷

The impact on the environment, including climate, on and from the transport network and its use is another pressing issue. The extensive road system crosses many sensitive ecosystems, habitats, and waterways, leading to habitat fragmentation, noise pollution, artificial light, and stormwater discharges.

Looking ahead, climate change is expected to intensify these impacts because of more frequent extreme weather events, increased infrastructure stress, and greater disruption to both human and natural systems. Future challenges will also include managing the environmental footprint of new transport technologies and ensuring that safety improvements keep pace with population growth and the needs of changing demographics (such as people with children), travel patterns (increased travel by older people) and vehicle types, while also taking advantage of new technologies (for example cooperative intelligent transport systems and alternatives to bitumen) to improve safety and environmental outcomes.

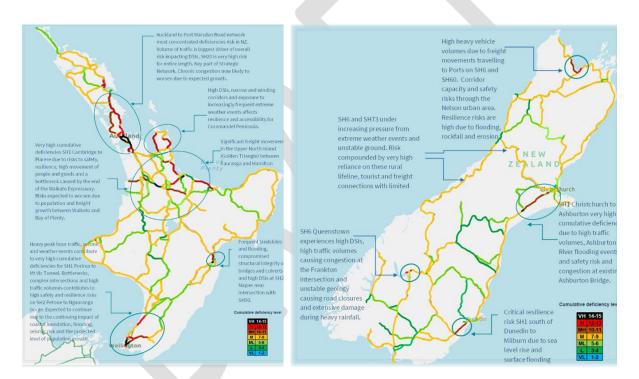


Figure 1: Combined (resilience, reliability and safety) deficiencies across the state highway network (source: NZTA data³⁸)

³⁶ Emission: Impossible Ltd and the HAPINZ 3.0 team (2022) Key findings from HAPINZ. Accessed October 2025 from https://ehinz.ac.nz/projects/hapinz3/key-findings-from-hapinz/

³⁷ Auckland Council (2022). *Transport emissions reduction pathway*. Accessed October 2025 from https://www.aucklandcouncil.govt.nz/plans-projects-policies-reports-bylaws/our-plans-strategies/Documents/transport-emissions-reduction-pathway.pdf

strategies/Documents/transport-emissions-reduction-pathway.pdf

38 Analysis of NZTA National Resilience Assessment Tool (NRAT), NZTA average annual daily traffic and NZTA cumulative risk using DSI data from 2019 to 2023.

Regional context of the state highway network

The South Island is vital to New Zealand's social and economic success. It's home to nearly a quarter New Zealand's population and generates more than 22 percent of the national GDP. About 22 percent of the country's population growth over the next 20 years is expected in the South Island.

Figure 2: Current strategic network in the South Island (source: Arataki)

The Marlborough transport network connects to:

- west in the north: SH6 to Nelson
- · west further south: SH63 to St Arnaud
- south: SH1 to Kaikoura and then Christchurch

These connections provide key links to the rest of New Zealand, urban areas, freight hubs, ports, employment areas and tourist hotspots.

This section discusses the key current and future challenges of this region's transport network, using evidence and insights from NZTA's *Arataki* and regional planning documents.

The recovery effort from the severe weather events of 2021, 2022 and 2025 is ongoing and will require significant investment over the coming years. This has placed pressure on the region's ability to maintain its roading network and deliver other transport improvements. Marlborough's economy, heavily reliant on primary industries and inter-island freight connections, needs a resilient and efficient transport system to support productivity and community wellbeing.

Improving road safety

SH1 between Picton and Blenheim is a key freight route and is a high-speed undivided road. Traffic volumes peak in alignment with ferry arrival and departure times, and some drivers can take risks if concerned about missing the ferry.³⁹ Rural roads (with their higher speeds) are where most death or serious injury occur from accidents. In urban areas most accidents involve cyclists or at intersections.

³⁹ Marlborough District Council. (2024). *Marlborough Regional Land Transport Plan 2024–2034*. Accessed October 2025 from https://www.marlborough.govt.nz/services/roads-and-transport/regional-land-transport-plan-2024-34

The communities at risk register also identifies cyclists as generally being at higher risk in Marlborough than most other regions in New Zealand.⁴⁰

Marlborough's road safety challenges include:

- SH1 between Picton and Blenheim is a priority freight route and traffic volume spikes
- urban intersections in Blenheim nearing capacity, increasing crash risk
- Weld Pass presenting alignment and safety issues for freight and general traffic
- increased freight traffic heightening safety concerns across the network.

Urban traffic volumes on state highways are expected to increase at a faster rate than population growth due to reliance on the state highway network within Blenheim where route options are limited by river and rail corridors and a small number of bridge crossings. This will place pressure on key infrastructure like SH6 and constrained intersections such as the Battys/Murphys roundabout.

Without targeted investment in high-risk corridors and urban intersections, road safety outcomes will remain poor.

Network Efficiency

The volume of freight travelling by road impacts Picton and Blenheim. Truck parking in Picton is inadequate, and key intersections in Blenheim are reaching capacity which slows traffic. There is some concern about the risk to the movement of people and goods of delays with two ferries, and the potential flow on wider regional economic effects on the freight system.⁴¹

Marlborough does not have any traffic signals and uses roundabouts to manage busy intersections. Key intersections on SH1 and SH6 are constrained, and Weld Pass is windy with narrow alignment which results in safety risk and lower efficiency.

Blenheim's constrained route options due to river and rail corridors, and lack of clearly defined boundaries in the town centre, leads to inefficient access and poor traffic flow. Housing growth on the periphery of Blenheim is increasing traffic flow at key intersections on the state highway network resulting in long queues and delays. The issues start with the school peak and continues to after the commuter peak has concluded. There are also dispersed land use patterns, increased car use, inefficient supply chains for freight and lower use of walking and cycling.⁴² These issues combine to reduce the towns value as a commercial and cultural hub.

Improving transport accessibility for all communities

The region's reliance on private vehicles, especially outside Blenheim, creates challenges for those without access to a car. Key issues include:

- limited public transport options
- poor travel choice for people with mobility needs or lower incomes
- pressure on household budgets due to car dependency
- rural communities needing reliable access to Blenheim for essential services.

⁴⁰Waka Kotahi NZ Transport Agency. (2024). Communities at risk register 2024. https://www.nzta.govt.nz/assets/resources/communities-at-risk-register/docs/communities-at-risk-register-2024.pdf

⁴¹ Waka Kotahi NZ Transport Agency. (2022, April 12). *Waitohi Picton Port Access: Single Stage Business Case Addendum* [Confidential report]. Waka Kotahi NZ Transport Agency. Accessed October 2025 from https://www.nzta.govt.nz

⁴²Marlborough District Council & Waka Kotahi NZ Transport Agency. (2021). *Blenheim Integrated Transport Strategic Business Case* (Version 1.3). Accessed October 2025 from

https://www.marlborough.govt.nz/repository/libraries/id:2ifzri1o01cxbymxkvwz/hierarchy/documents/yourcouncil/meetings/2021/assets-services-2021-

list/Assets_%26_Services_Committee_11_November_2021_Item%203.PDF

Active travel rates in Blenheim are above the national average but fall short compared to similar towns like Nelson and Motueka, largely due to limited infrastructure. ⁴³ Most cycling facilities cater to recreation rather than commuting, and many older streets lack footpaths on both sides, contributing to reduced accessibility for pedestrians.

An ageing population will further increase the need for accessible transport options, including walking and cycling infrastructure and mobility-friendly design.

Improving transport resilience

Marlborough has experienced several severe weather events in the recent past which has resulted in a significant number of long-term road closures on SH6 and in the Marlborough Sounds which has reduced access for communities and extended freight times. 44 Storm damage recovery is dominating investment priorities and limiting funding for other transport needs. The transport network lacks resilience, with few alternative routes and vulnerability to future weather events.

Reliable and resilient interregional connections to the North Island, through Cook Strait, and to the east and west coasts will continue to be important to this region and to the rest of the South Island. SH1 remains the only viable freight route between Picton and Blenheim due to restrictions on Queen Charlotte Drive.

Climate change will place even greater pressure on the region's ability to maintain networks and fund new infrastructure and services. The next 30 years will see a growing risk of damage to road and rail networks because of increased rain and storm intensity, coastal and soil erosion, sea-level rise, flooding, slips, and storm surges.⁴⁵ The Future Access study identified these significant vulnerabilities in the region's transport network and infrastructure:⁴⁶

- The serious risk of inundation and erosion is increasing as rising sea levels and rainfall
 intensities worsen along with climate change. Damaging storm events are expected to occur
 approximately twice as often.
- Strategically important roads like Queen Charlotte Drive and Port Underwood Road are built on unstable land and are highly susceptible to slips.
- Emergency works spending in the Sounds is ten times higher than elsewhere in Marlborough. Marine access is costly and limited affecting many residents and businesses.
- There has been prolonged disruption to locations that limit access to lifeline infrastructure like the Cook Straight electricity cable and can isolate communities.

Seismic risk associated with the Alpine Fault is also significant across the South Island. With minimal intervention, the region's road and rail networks will remain under pressure from the effects of changing hazard risk, and their reliability will be compromised.

 $\frac{\text{https://www.marlborough.govt.nz/repository/libraries/id:2ifzri1o01cxbymxkvwz/hierarchy/documents/your-council/meetings/2021/assets-services-2021-}{}$

⁴³Marlborough District Council & Waka Kotahi NZ Transport Agency. (2021). *Blenheim Integrated Transport Strategic Business Case* (Version 1.3). Accessed October 2025 from

list/Assets %26 Services Committee 11 November 2021 Item%203.PDF

⁴⁴ Marlborough District Council. (2024). Marlborough Regional Land Transport Plan 2024–2034. Accessed October 2025 from https://www.marlborough.govt.nz/services/roads-and-transport-plan-2024-34

plan/regional-land-transport-plan-2024-34

45 Ministry for the Environment (n.d.). Climate projections map. Climate Data Initiative. Accessed October 2025 from https://map.climatedata.environment.govt.nz/

⁴⁶ Marlborough District Council. (2023). *Marlborough Sounds Future Access Programme Business Case*. Retrieved from Accessed October 2025 from

https://www.marlborough.govt.nz/repository/libraries/id:2ifzri1o01cxbymxkvwz/hierarchy/documents/services/roads-and-transport/msfas-background-list/Marlborough-Sounds-Future Access PBC v4 Final.pdf

Funding new, and maintaining existing infrastructure

Budget constraints caused by storm recovery have led to reduced routine maintenance.⁴⁷ This risks further deterioration of road conditions and limits the region's ability to fund new infrastructure. With population growth and an ageing demographic, maintaining existing infrastructure and delivering appropriate services will become increasingly difficult.

In addition, the cost of routine road maintenance and renewals has risen in recent years due to inflation, increased labour and material costs, and regulatory requirements. Contributing factors include a shift to safer and more environmentally friendly bitumen and changes in temporary traffic management practices.

State highway hotspots

The following transport network issues are from the perspective of NZTA as the state highway manager.

The following data sets have been overlaid to identify 'hotspots' on the state highway network:

- Reliability: Measured by average annual daily traffic (AADT), which calculates the total number of vehicles, including heavy vehicles, passing through traffic count sites. High to medium reliability issues are identified when highways frequently operate at or near their capacity of 20,000 vehicles per day.
- **Resilience**: Assessed by examining the risk of disruptions across the state highway network over the past 12 years.
- **Safety**: Derived from the NZTA Collective Risk Map, which uses historical crash data from 2019 to 2023 to identify areas with higher accident risks.

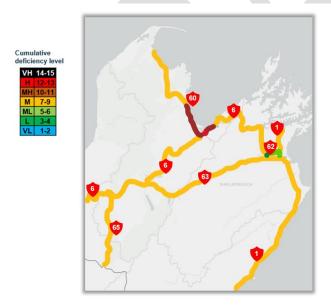


Figure 3: Combined deficiencies across the state highway network across the Nelson, Tasman and Marlborough regions (source: NZTA data⁴⁸)

⁴⁷ Marlborough District Council. (2024). *Marlborough Regional Land Transport Plan 2024–2034*. Accessed October 2025 from https://www.marlborough.govt.nz/services/roads-and-transport/regional-land-transport-plan-2024-34

⁴⁸ Analysis of NZTA National Resilience Assessment Tool (NRAT), NZTA Average Annual Daily Traffic and NZTA Cumulative Risk using DSI data from 2019 to 2023.

Medium combined deficiencies

Most corridors in the Marlborough region have a combined deficiency ratings of medium. These are on sections of SH1 and SH6.

- SH1 Picton to Spring Creek is a critical freight route, connecting the Interislander ferry
 terminal in Picton to the rest of the South Island via Blenheim and beyond. It supports heavy
 vehicle movements, especially trucks transporting goods between islands. There is no
 alternative route should it be closed. It has a medium deficiency rating due to a critical NRAT
 score (geological) and low traffic volumes.
- **SH1** Blenheim to Kaikoura plays a vital role for the movement of freight and is also part of the Alpine Pacific Touring Route. It has a medium deficiency rating due to a critical NRAT score (hydro and geological), low traffic volumes and a medium-low safety rating.
- SH6 Blenheim to Renwick forms a crucial east-west corridor. It links with SH1 at Blenheim, facilitating movement between the east and west coasts. This section of SH6 also provides direct access to Marlborough Airport. It has a medium deficiency rating due to a combination of a critical NRAT rating (hydrological), medium-high safety rating and low traffic volumes. On average, over 1200 heavy vehicles use this route daily, contributing significantly to the overall traffic volume. The highway is susceptible to various hydrological and geological risks, such as flooding, rockfalls, and erosion. Additionally, it's still in the recovery phase from the significant damage caused by the weather events of 2022.

There are pressures on SH1 and SH6 in urban Blenheim because of residential growth and associated and traffic volumes and congestion especially at roundabouts.

Proposed initiatives

Further investigation may be required to understand the future resilience pressures on SH1, SH62 and SH63 corridors and whether MOR activities will be sufficient to maintain the required level of network performance over the next 30 years, particularly because of the lack of suitable detour routes for many corridors in this region.

The State highway Improvement Program⁴⁹ includes proposed and confirmed improvements to port access on SH1 in Picton and safety improvements on SH6 between Blenheim and Woodbourne and resilience improvements on SH1 between Picton and Blenheim and on SH6 between Blenheim and Kekerengu. While SH1 is nationally significant and SH6 from Blenheim to Nelson is regionally strategic there are minimal safety improvements identified.

⁴⁹ Waka Kotahi NZ Transport Agency. (2024). State Highway Investment Proposal 2024–34. Waka Kotahi NZ Transport Agency. Accessed October 2025 from https://nzta.govt.nz/assets/resources/state-highway-investment-proposal-2024-34.

Focusing effort

Note: this section has a high-level strategic focus; we'll develop more specificity in future iterations of the evidence pack.

Based on the preceding sections and consideration of regional investment priorities identified in regional plans (e.g. RLTP, RPTP, FDS), the following lists are examples of investment focus.

Longer-term investment focus

Effectively delivering on transport outcomes requires long-term planning and investment, examples include:

Resilience and security

- Investigating options for critical transport corridors away from high-risk areas in the face of
 natural hazards such as relocation and extension of routes this includes working with
 communities to identify plans for when to defend, accommodate, or retreat.
- Investigating the diversification of transportation networks by developing alternative modes.
- Develop a plan for maintaining, operating, and replacing end-of-life infrastructure

Economic prosperity

- Align transport investments with urban development plans supporting, enabling, and encouraging growth and development in areas that have good travel choices and shorter trip lengths
- Improving travel in and around key destinations with complex transport interconnections, especially interregional connections, town centres and key freight and industrial hubs.

Healthy and safe people

- Continue to invest in safety infrastructure, education, enforcement, and incentives that significantly reduce harm caused by the region's transport system.
- Focus improvement on local corridors that have safety deficiencies across multiple modes.

Environmental Sustainability

- Continue to reduce the environmental impact of the maintenance, operations and improvement across the transport network including waste minimisation and resource efficiency.
- Deliver interventions, activities, and investments needed to achieve emissions reduction across the region.

Inclusive access

- Working with iwi/hapū partners to improve or maintain, as appropriate, physical access to marae, papakāinga, wāhi tapu, and wāhi taonga.
- Continue to improve the design and provision of transport infrastructure and services to meet the needs of people of all ages and abilities, focusing on groups with unmet needs.
- Progressive implementation of connected walking and cycling networks in urban areas this
 includes the completion of cycling networks in Blenheim and improved active-mode facilities
 in smaller towns.
- Progressive implementation of an integrated public transport network with service improvements across the region

Short-term investment focus

Projects in the shorter term typically will involve low-cost, low-risk, high-effectiveness improvements and projects that 'set the scene' to incrementally enable (or transition to) longer-term outcomes.

Steps to make progress towards transport outcomes in a more efficient and cost-effective way include:

- renewing the focus on programmes' small-scale projects
- getting more from existing infrastructure, by making the most of existing networks, services, and demand management
- reallocating existing road space, particularly for public transport and active modes
- seeking continuous improvement in network resilience through maintenance, renewals, and low-cost, low-risk investments
- influencing travel behaviour and growth patterns.

Examples of investment focus include:

Resilience and security

- Develop an understanding of routes such as the SH1 and SH6 corridors, which provide critical connections, including their conditions, pressures, and the level of investment needed to address impacts.
- Investigate whether maintenance, operations, and renewals (MOR) will be sufficient to maintain the required level of performance over the next 30 years.
- Identify transport assets and infrastructure at risk of natural hazards and impacts of climate change, identifying priorities for network resilience and options for alternate routes less likely to be disrupted.

Economic prosperity

- Allow for continued growth by investing in road infrastructure to enable residential areas to be developed
- Influence growth to make sure future greenfield development is integrated with public transport and active mode networks to create medium-density residential areas.
- Maintain and improve the resilience and efficiency of the road network to surrounding regions.
- Continue with repairs to the road network, that were informed by The Marlborough Sounds Future Access Study.⁵⁰
- Support the ferry replacement project to improve the journey between Picton and Wellington, through Cook Strait.

Healthy and safe people

- Continue safety improvements that target high-risk intersections, run-off road crashes, high-volume roads, and head-on crashes on high-risk rural roads, this includes a critical focus on SH6 between Blenheim and Nelson.
- Address safety challenges in non-protected areas of existing cycling and walking networks.
- Improve access to sites of cultural significance with high safety risk.

Environmental sustainability

 Plan what interventions, activities, and investments are needed to achieve emissions reduction, focusing on the Blenheim urban area.

⁵⁰ **Marlborough District Council.** (2023). *Marlborough Sounds Future Access Study*. Accessed October 2025 from https://www.marlborough.govt.nz/services/roads-and-transport/marlborough-sounds-future-access-study

Reduce the environmental impact of the maintenance, operations and improvement across
the transport network by supporting and enabling low-emission, low-carbon and low-impact
policies, practices, and standards.

Inclusive access

- Improve intersections that experience long periods of queuing and delays
- Improve travel choice and access to opportunity for areas of low access and low income.
- Improve public transport service quality and reliability.
- Improve access to opportunities for iwi Māori, focusing on enabling papakāinga development and commercial interests.

Potential interventions

As part of the PIE programme, NZTA is developing the Intervention Catalogue (IC) tool, which compiles a wide range of empirical data relating to the implementation of transport projects and how effective they have been in achieving the intended outcomes. We'll continue to add to this over time, using data from benefit realisation associated with the investment logic mapping (ILM) process.

An AI interface for supporting queries and providing relevant evidence is currently being investigated.

An example of how exploratory use of this tool might be used to match potential interventions to deficiencies to understand and compare the likely relative effectiveness is included in Appendix B.

The process seeks to avoid potential pitfalls that might occur during option formulation:

- an over-reliance on preconceived ideas
- a focus on the more obvious supply-side measures, such as infrastructure and management rather than demand-side measures such as regulation and pricing
- a general lack of awareness of the wider range of policy measures available
- lack of evidence of the performance of those measures in other contexts
- lack of a formalised or consistent approach for option generation.

The example tables included in <u>Appendix B</u> take the focus areas and related transport issues from the previous section of this report and maps them to some relevant interventions from the KonSULT knowledgebase.

Insights

Using IC is only intended to inform the option formulation process. It does not replace the need for judgement but rather provides a set of empirical evidence that supports decisions (along with additional information sources).

The tables in Appendix B indicate the following:

- Most interventions related to addressing the identified Marlborough deficiencies are likely to be cost effective.
- Most interventions have mostly a positive (or neutral) effect across all outcomes, much more so than negative.
- Some of the most effective interventions for Marlborough indicated by IC include:
 - new infrastructure (safe systems)
 - o new infrastructure and maintenance (resilience)
 - new services (PT)
 - o walking and cycling network improvements
 - road space reallocation
 - spatial and place-based planning.

Short-list of most effective interventions

It is intended that the information and tools provided above will assist consideration and development of projects to be included in the next RLTP and NLTP.

It provides a starting point for us to understand regional issues and investment opportunities, which can then be expanded upon through further engagement between approved organisations and NZTA to increase the likelihood of suitable projects being submitted for funding via the NLTP.

Appendix A: Data sources for the strategic measures

This appendix references all relevant data sources and assumptions for the <u>14 strategic measures</u> reported within each regional chapter.

Because this is the first attempt at providing the evidence pack, and the development of the associated tools and processes under the Planning and Investment Evidence base (PIE) programme is still ongoing, we do not yet have the full capability to report outputs for all measures, particularly for future years. In these instances, we have noted that the data is 'not available' by using the 'N/A' abbreviation as a placeholder until such time this can be addressed by a subsequent version of the evidence pack.

Similarly, the process has identified the need for better understanding and reporting of data quality ratings, version control and internal consistency (that is, a single source of truth). These are all things we intend to improve in subsequent releases.

Bearing the above in mind, we have adopted the following general convention for this version in how we report numbers:

- For large numbers, only report 3–4 significant figures (and using rounding units of thousands or millions).
- For small numbers (including percentages), report to one decimal place by default, but make exceptions where appropriate (for example where more or less detail is required to make meaningful comparisons).

The focus is on convenience and the useability of the data. As such, it doesn't necessarily imply a particular level of accuracy (especially for future year forecasts, which have a great deal of uncertainty associated with them).

Each section below (grouped by outcome) provides data for all regions to allow comparison in terms of how each region contributes to the national total. It also provides any important caveats and limitations associated with each of the measures for that outcome.

Healthy and safe people

To understand the current and future safety risk both at the regional and national level, we calculated deaths and series injuries, personal risk and collective risk as shown in the following table. More details can be found in the Land Transport Benefits Framework.

Benefit framework measure	Units
1.1.1 Collective risk (crash density)	Average annual fatal and serious per kilometre of road section
1.1.3 Deaths and serious injuries (DSIs)	Number of DSIs (annual)
1.1.4 Personal risk (crash rate)	Average annual DSI per 100 million vehicle kilometres

Notes, caveats and data limitations:

- Data for the number of deaths and series injuries (DSIs) is sourced from the Crash Analysis System (CAS) database managed by NZTA.
- Regional VKTs and network length in kilometres is sourced from the NZTA official data published for financial year 2023/24.⁵¹
- Generally, DSI measures are calculated as multi-year rolling average. However, because of time and resource constraints the following data is for the financial year 2023/24 only.

New Zealand Government

⁵¹ Waka Kotahi NZ Transport Agency. (n.d.). *Data and tools*. Accessed October 2025 from https://www.nzta.govt.nz/planning-and-investment/learning-and-resources/transport-data/data-and-tools/

- Future year growth factor is based on regional VKT change. This method to calculate this change is discussed in more detail for the 'E.4 Environmental sustainability' section later in this appendix.
- It is assumed that crash rates remain constant over time. This is consistent with safety expert advice that application of crash trend adjustment factors for long term future predictions may no longer be supported by evidence.
- Future year DSIs were estimated based on the regional change on VKT (all vehicles) between 2023 and 2048 adopted for the GHG emissions measure (8.1.1). This assumes the crash rate (per VKT) remains constant (that is, no crash trend reduction factors applied).

Region	Current 2023	/24		Future 2048		
	DSIs#	Per km	Per 100 million VKT	DSIs#	Per km	Per 100 million VKT
01 – Northland	181	0.027	7.783	176	0.026	7.554
02 – Auckland	593	0.073	4.267	924	0.114	6.651
03 – Waikato	416	0.035	6.372	501	0.042	7.678
04 - Bay of Plenty	184	0.038	5.321	210	0.044	6.059
05 – Gisborne	33	0.015	7.779	37	0.016	8.737
06 – Hawke's Bay	125	0.027	7.005	145	0.031	8.135
07 – Taranaki	82	0.021	6.293	97	0.024	7.429
08 – Manawatū-Whanganui	234	0.026	7.718	231	0.026	7.619
09 – Wellington	171	0.039	4.671	230	0.052	6.289
10a Marlborough	26	NA	3.843	30	NA	3.843
10b Nelson Tasman	91	NA	8.687	125	NA	8.687
11 – Canterbury	346	0.021	5.007	480	0.030	6.942
12 – West Coast	43	0.014	7.548	43	0.014	7.545
13 – Otago	137	0.013	4.799	142	0.013	4.968
14 – Southland	51	0.007	3.877	53	0.007	4.024
15 – Chatham Islands	0	0.000	0.000	0	0.000	0
National	2713	0.025	5.451	3419	0.035	5.055

Infrastructure risk rating (safety)

We calculate strategic measure 1.2.1 Road assessment rating to understand the current situation of infrastructure risk both at regional and national level. This measure can be used for any safety-related investment benefits, particularly those that target road infrastructure to improve safety. It is a comprehensive measure that considers land use, road type, alignment, average annual daily traffic (AADT), intersection density, land and shoulder width, roadside hazards and access density. More details can be found in the Land Transport Benefits Framework.

Benefit framework measure	Units
1.2.1 Road assessment rating – roads	Average infrastructure risk rating

Notes, caveats and data limitations:

- Data to calculate the regional infrastructure risk rating (IRR) measure in the following table is sourced from Megamaps, which is a geospatial platform managed by NZTA.52
- IRR data used to calculate regional and national measure values in the following table was calculated in Megamaps in 2024. The raw data used is for the period 2019–23.
- The data in Megamaps is for each road segment, intersection or corridor. We have aggregated it to calculate regional percentages under each risk band.

Region	High	Medium- high	Medium	Low- medium	Low
01 – Northland	45.77%	26.44%	18.74%	8.34%	0.71%
02 – Auckland	14.92%	17.54%	48.12%	13.18%	6.24%
03 – Waikato	21.40%	25.42%	34.39%	15.15%	3.64%
04 – Bay of Plenty	17.10%	20.74%	37.82%	19.35%	4.99%
05 – Gisborne	50.43%	19.93%	21.93%	7.50%	0.21%
06 – Hawke's Bay	33.47%	25.30%	29.79%	9.16%	2.28%
07 – Taranaki	28.83%	24.08%	33.13%	13.13%	0.83%
08 – Manawatū-Whanganui	41.81%	19.13%	25.67%	12.43%	0.96%
09 – Wellington	17.98%	19.51%	41.67%	13.62%	7.22%
10a Marlborough	40.79%	19.50%	25.07%	13.23%	1.41%
10b Nelson Tasman	28.46%	27.02%	30.26%	12.74%	1.51%
11 – Canterbury	10.87%	29.16%	42.29%	16.36%	1.32%
12 – West Coast	17.75%	29.97%	38.04%	13.61%	0.63%
13 – Otago	21.83%	37.95%	26.55%	12.63%	1.04%
14 – Southland	6.99%	41.27%	37.99%	13.34%	0.42%
National%	23.21%	2.29%	13.50%	34.25%	26.75%

⁵² Waka Kotahi NZ Transport Agency. (n.d.). *MegaMaps*. Accessed October 2025 from https://spatial.nzta.govt.nz/apps/megamaps/

Resilience and security

This transport outcome is about minimising and managing the risks from natural and human-made hazards, anticipating and adapting to emerging threats, and recovering effectively from disruptive events. We intended to use strategic measure 4.1.1 and 4.1.2 from the Land Transport Benefits Framework to understand the resilience and security situation at national and regional level. However, we don't currently have data to calculate measure 4.1.1, so this time around we have only calculated measure 4.1.2. The intent of the measure 4.1.2 is to allow for description and measurement of the risk to level of service by unplanned disruption (including earthquakes, storms, volcanos and tsunamis). This measure is generally used for any investment that focuses on maintaining or increasing the resilience of the transport network.

Benefit framework measure	Units
4.1.1 Availability of a viable alternative to high-risk and high-impact route	Percentage of high-risk, high-impact route with a viable alternative
4.1.2 Level of service and risk	Number of identified sites in region by combined risk rating (future, geological and hydrological)

Notes, caveats and data limitations:

- The data for the following measure is sourced from the National Resilience Assessment Tool (NRAT) managed by NZTA.⁵³
- The following table shows the regional number of resilience risks on state highways under each risk band. This includes hydrological, geological and future risks.
- 'No rating' is for considered risk sites that have not yet been rated.
- There is no easy way to currently calculate future projections for this measure, but we are working on the capability to do so.

Regions	Critical	High	Moderate	Low	No rating
01 – Northland	29	84	276	171	169
02 – Auckland	5	13	29	41	1
03 – Waikato	20	175	212	174	149
04 – Bay of Plenty	16	64	153	121	67
05 – Gisborne	1	7	35	49	74
06 – Hawke's Bay	18	123	72	30	143
07 – Taranaki	0	11	9	0	98
08 – Manawatū-Whanganui	1	11	9	8	8
09 – Wellington	39	37	25	118	1
10a Marlborough	5	8	8	17	39
10b Nelson Tasman	4	43	51	160	52
11 – Canterbury	32	88	57	195	46
12 – West Coast	34	49	21	34	37
13 – Otago	26	84	86	247	172
14 – Southland	27	23	18	28	14
National	257	820	1061	1393	1070

⁵³ Waka Kotahi NZ Transport Agency. (n.d.). *National Resilience Assessment Tool*. Accessed October 2025 from https://national-resilience-assessment-tool-nzta.hub.arcgis.com/

Economic prosperity

This transport outcome is about supporting economic activity via local, regional, and international connections, with efficient movements of people and products. We calculated the following strategic measures from the <u>Land Transport Benefits Framework</u> to measure the economic prosperity outcomes at both regional and national level.

Benefit framework measure	Units
5.1.2 Travel time reliability – motor vehicles (note for this evidence pack, the data only relates to state highway traffic monitoring system (TMS) sites)	Calculated using coefficient of variation (CoV); standard deviation of travel time divided by average minutes travel time Rate: Low <0.3, Medium 0.3–0.6, High >0.6)
5.1.3 Travel time delay	Difference between average travel time during AM peak and average travel time during the Inter Peak in minutes per kilometre (by mode) as a percentage
5.2.2 Freight – mode share value	Percentage of value for each mode
5.2.3 Freight – mode share weight	Percentage of weight for each mode

Notes, caveats and limitations:

- Data for travel time reliability and delay measures is sourced from the National Network Performance (NNP) platform managed by NZTA.
- The sources used to calculate following measures is limited to the TMS sites only that is, for state highways. In future, as more data is available in NNP for local roads, we intend to calculate using extensive local and state highway roads. Additionally, NNP will be able to assess both travel time delay and travel time reliability.
- The data for 5.1.2 Travel time reliability and 5.1.3 Travel time delay is for a typical day.
- Where we have gained access to regional model origin—destination data (for Auckland, Waikato, Wellington and Christchurch), we have used this to estimate current and future values of travel time for all available modes.
- Measure 5.2.2 Freight mode share value has been selected as one of the 14 strategic measures but currently, there is insufficient data to reliably calculate this. Therefore, the data table for this measure remains unpopulated as a placeholder.
- Measure 5.2.3 Freight mode share weight would ideally include coastal shipping but currently only includes road and rail modes.
- Future road freight is based on the same data used to forecast heavy commercial vehicle (HCV) VKT (also used for other measures) combined with average cargo weight from weigh-in-motion (WiM) sites (collected for the North Island only but also applied to the South Island due to lack of data from the South Island). This data covers seven years and shows a trend of average load sizes decreasing over time. This trend line was used to estimate the 2048 average cargo weight (4615kg). Compared to the 2024 value (4822kg), this implies the average load size is projected to decrease by 7%. In contrast, national HCV VKT is projected to increase by 39% (2024 to 2048).
- The last seven years of rail freight net tonne-kilometres (NTK) by line segment has been provided by KiwiRail. This indicates that the amount of freight is reasonably steady over this period (with a small decline over the last few years). Based on the overall trend, we have assumed future year (2048) NTK will remain the same as current day (2024)
- A discrepancy in the rail data has been noted, where a 27km section of the network is missing from the calculations. This is possibly the section between Palmerston North and Woodville, which has been noted for further follow up.

5.1.2 Travel time reliability – motor vehicles

Region		Daily (CoV) Peak time (CoV)						
			Low	Medium	High	Low	Medium	High
01 – Northland			96.43%	3.57%	0.00%	88.24%	0.00%	11.76%
02 – Auckland			96.67%	2.50%	0.83%	78.57%	9.18%	12.24%
03 – Waikato			94.59%	1.35%	4.05%	95.00%	0.00%	5.00%
04 – Bay of Plenty			100.00%	0.00%	0.00%	80.56%	19.44%	0.00%
05 – Gisborne			96.30%	3.70%	0.00%	100.00%	0.00%	0.00%
06 – Hawke's Bay			98.95%	1.05%	0.00%	65.38%	34.62%	0.00%
07 – Taranaki			94.74%	5.26%	0.00%	69.44%	16.67%	13.89%
08 – Manawatū-Whanganui			92.11%	7.89%	0.00%	82.56%	8.14%	9.30%
09 – Wellington			92.37%	6.78%	0.85%	67.90%	30.86%	1.23%
10a - Marlborough			100.00%	0.00%	0.00%	86.49%	10.81%	2.70%
10b – Nelson Tasman	1	00.00%	0.00%	0.00%	86.49%		10.81%	2.70%
11 – Canterbury	94.39%	3.96%			1.65%	73.98%	16.84%	9.18%
12 – West Coast			96.30%	1.23%	2.47%	98.08%	0.00%	1.92%
13 – Otago			92.59%	6.79%	0.62%	75.56%	17.78%	6.67%
14 – Southland			93.27%	5.77%	0.96%	71.43%	21.43%	7.14%
National			95.30%	3.84%	0.86%	77.34%	15.54%	7.12%

5.1.3 Travel time delay

Region	Peak (mins/km)	Inter-peak (mins/km)	Difference (mins/km)	%Change
01 – Northland	0.78	0.85	0.7	8.40%
02 – Auckland	0.77	0.86	0.8	10.23%
03 – Waikato	0.79	0.87	0.8	9.17%
04 – Bay of Plenty	0.69	0.76	0.6	8.18%
05 – Gisborne	0.75	0.77	0.2	3.30%
06 – Hawke's Bay	0.79	0.87	0.7	9.15%
07 – Taranaki	0.80	0.88	0.7	8.46%
08 – Manawatū-Whanganui	0.73	0.78	0.4	5.72%
09 – Wellington	0.83	1.00	0.2	16.94%
10a – Marlborough	0.82	0.84	0.1	1.98%
10b – Nelson Tasman	0.82	0.84	0.1	1.98%
11 – Canterbury	0.75	0.77	0.2	3.46%
12 – West Coast	0.74	0.77	0.2	3.13%
13 – Otago	0.74	0.78	0.3	4.69%
14 – Southland	0.73	0.76	0.2	3.23%
National	0.76	0.83	0.6	8.17%

5.2.3 Freight – mode share weight – base year 2024

Region	Road (m NKT/yr)	Rail (m NKT/yr)	Total (m NKT/yr)	Road (%)	Rail (%)
01 – Northland	933	17	950	98%	2%
02 – Auckland	2,968	132	3,100	96%	4%
03 – Waikato	5,128	751	5,878	87%	13%
04 – Bay of Plenty	2,257	534	2,791	81%	19%
05 – Gisborne	308	0	308	100%	0%
06 – Hawke's Bay	1,145	31	1,145	97%	3%
07 – Taranaki	616	59	675	91%	9%
08 – Manawatū-Whanganui	1,864	646	2,510	74%	26%
09 – Wellington	1,027	102	1,128	91%	9%
10a – Marlborough	603	60	662	91%	9%
10b – Nelson Tasman	609	0	609	100%	0%
11 – Canterbury	4,135	563	4,697	88%	12%
12 – West Coast	418	313	731	57%	43%
13 – Otago	1,427	220	1,647	87%	13%
14 – Southland	794	73	867	92%	8%
15 - Chatham Islands	0	0	0	100%	0%
Grand total	24,238	3,500	27,738	87%	13%

5.2.3 Freight – mode share weight – future year 2048

Region	Road (m NKT/yr)	Rail (m NKT/yr)	Total (m NKT/yr)	Road (%)	Rail (%)
01 – Northland	978	17	955	98%	2%
02 – Auckland	4,137	132	4,269	97%	3%
03 – Waikato	6,676	751	7,427	90%	10%
04 – Bay of Plenty	2,942	534	3,476	85%	15%
05 – Gisborne	285	0	285	100%	0%
06 – Hawke's Bay	1,330	31	1,361	98%	2%
07 – Taranaki	744	59	803	93%	7%
08 – Manawatū-Whanganui	2,341	646	2,987	78%	22%
09 – Wellington	1,047	102	1,149	91%	9%
10a – Marlborough	838	60	898	93%	7%
10b – Nelson/Tasman	846	0	846	100%	0%
11 – Canterbury	5,155	563	5,717	90%	10%
12 – West Coast	464	313	777	60%	40%
13 – Otago	1,701	220	1,921	89%	11%
14 – Southland	922	73	995	93%	7%
15 – Chatham Islands	0	0	0	100%	0%
Grand total	30,419	3,500	33,919	90%	10%

Environmental sustainability

This transport outcome is about transitioning to net zero carbon emissions, and maintaining or improving biodiversity, water quality and air quality. We calculated following strategic measures from the <u>Land Transport Benefits Framework</u> to the measure the economic prosperity outcomes at both regional and national level.

Benefit framework measure	Units
8.1.1 Greenhouse gas emissions (all vehicles)	Annual tonnes of CO ₂ equivalents (CO ₂ -e) emitted
8.1.3 Light vehicle use impacts	Annual light vehicle kilometres travelled (light VKT)

Notes, caveats and limitations:

- Current year data for VKT is sourced from NZTA's open data portal.
- Future light national VKT projections have been sourced from the NZTA 2024 Light VKT projection models. These are based on Stats NZ population growth and forecasts for GDP and fuel prices (mid-range assumptions have been adopted for this evidence pack).
- Future regional light vehicle VKT distribution is based on research work done by Beca (VKT and GHG emissions baseline report NZTA research note 008 September 2022). This assumes the base year light VKT per capita remains unchanged and uses population projection to estimate light VKT within each territorial local authority (TLA). The results are aggregated to spatial areas and adjusted to reconcile with the Ministry of Transport (MoT) observed and projected national totals. It uses base and projected light vehicle fleet GHG emissions factors from the Vehicle Fleet Emission Model (VFEM) to calculate GHG emissions for the baseline spatial areas. The report year 2035 (future) VKT values (by region) have been adjusted (scaled) to 2048 national light vehicle (LV) totals.
- Future year regional heavy vehicle VKT distribution has been calculated using growth factors
 comprising trend data, Stats NZ medium population forecast, and Ministry of Business, Innovation
 and Employment (MBIE) GDP forecast data. This is a placeholder calculation pending further
 work on HCV demand forecasting currently being developed (using this general approach) as part
 of the PIE programme.
- GHG emissions have been estimated by applying light and heavy VKT to <u>Vehicle Emissions</u>
 <u>Prediction Model</u> (VEPM) (v7.0) emission rates (for current and future years) using the default
 MoT Vehicle Fleet Model (VFM) assumptions within VEPM (for each year) and average vehicle
 speeds from NNP or regional transport models (Auckland, Waikato, Wellington and Christchurch).
- Estimates of VKT are key inputs to multiple measures (such as vehicle emissions (affecting both health and environmental measures), DSIs, freight etc. Care has been taken to ensure consistency at the national, regional and local levels.

8.1.1 Greenhouse gas emissions (all vehicles)

Region	Current 2024	Future 2048	Change	% Change	Contribution
01 – Northland	0.61	0.27	-0.35	-57%	4%
02 – Auckland	3.58	2.19	-1.38	-39%	26%
03 – Waikato	2.00	1.36	-0.64	-32%	14%
04 – Bay of Plenty	1.01	0.63	-0.38	-38%	7%
05 – Gisborne	0.13	0.07	-0.06	-48%	1%
06 – Hawke's Bay	0.52	0.30	-0.22	-42%	4%
07 – Taranaki	0.35	0.19	-0.16	-46%	3%
08 – Manawatū-Whanganui	0.87	0.49	-0.38	-44%	6%
09 – Wellington	0.93	0.45	-0.48	-52%	7%
10a – Marlborough	0.21	0.16	-0.05	-26%	2%
10b –Nelson Tasman	0.29	0.20	-0.10	-67%	2%
11 – Canterbury	1.98	1.26	-0.71	-36%	14%
12 – West Coast	0.17	0.10	-0.08	-44%	1%
13 – Otago	0.78	0.40	-0.38	-48%	6%
14 – Southland	0.38	0.21	-0.17	-46%	3%
15 - Chatham Islands	0.002	0.001	-0.001	-39%	0.02%
National	13.83	8.29	-5.54	-40%	100%

8.1.3 Light vehicle use impacts

Region	Current 2024	Future 2048	Change	% Change	Contribution
01 – Northland	2172	2075	-97	-4%	5%
02 – Auckland	13137	20504	7367	56%	29%
03 – Waikato	5597	6514	918	16%	12%
04 – Bay of Plenty	3056	3349	293	10%	7%
05 – Gisborne	369	420	52	14%	1%
06 – Hawke's Bay	1581	1810	229	14%	3%
07 – Taranaki	1199	1397	198	17%	3%
08 – Manawatū-Whanganui	2702	2523	-179	-7%	6%
09 – Wellington	3488	4746	1258	36%	8%
10a – Marlborough	558	597	39	7%	1%
10b –Nelson Tasman	928	1,257	329	71%	2%
11 – Canterbury	6182	8583	2402	39%	14%
12 – West Coast	494	476	-18	-4%	1%
13 – Otago	2610	2624	14	1%	6%
14 - Southland	1175	1182	7	1%	3%
15 - Chatham Islands	5	4	-0.4	-7.9%	0%
National	45250	58062	12812	28%	100%

Inclusive access

This transport outcome is about enabling all people to participate in society through access to social and economic opportunities, such as work, education and health care. We calculated the 10.2.1 and 10.3.1 strategic measures from the <u>Land Transport Benefits Framework</u> to measure the inclusive access outcome both at the national and regional level.

Benefit framework measure	Units
10.2.1 People – mode share	Percentage by mode (Census (2023) journey to work and education)
10.3.1 Access to key social destinations (all modes)	Number of jobs (x1000) accessible by mode in AM peak (car 40 min, PT 45 min, cycle 45 min) and distance from city centre (km)

Notes, caveats and limitations:

- There is a limited information about measure 10.2.1 in the <u>Land Transport Benefits Framework</u> measures manual that is, its intent, scope, forecasting methods etc are not defined yet.
- Mode share data, that is main means of travel to work and education, is sourced from census 2023 outputs produced by Stats NZ.⁵⁴
- The data for all public transport (PT) modes (buses, trains and ferries) is aggregated together.
- Where we have gained access to regional model origin—destination data (for Auckland, Waikato, Wellington and Christchurch), we've used this to estimate current and future values of 10.2.1 People – mode share based on modelled relative changes applied to the base year census values.

10.2.1 People - mode share

Region	%Car	%PT	%Cycle	%Peds
01 – Northland	91.00%	1.33%	0.99%	6.67%
02 – Auckland	77.81%	11.29%	1.32%	9.58%
03 – Waikato	86.34%	2.69%	2.49%	8.48%
04 – Bay of Plenty	87.36%	2.06%	3.37%	7.22%
05 – Gisborne	89.78%	0.43%	2.54%	7.25%
06 – Hawke's Bay	88.12%	0.99%	2.96%	7.93%
07 – Taranaki	87.18%	1.25%	2.91%	8.66%
08 – Manawatū-Whanganui	86.33%	1.77%	2.60%	9.30%
09 – Wellington	63.97%	18.40%	2.98%	14.64%
10a – Marlborough	84.37%	0.39%	5.82%	9.42%
10b- Nelson Tasman	78.24%	1.41%	8.30%	12.05%
11 – Canterbury	85.26%	0.17%	3.27%	11.30%
12 – West Coast	79.75%	4.44%	6.27%	9.54%
13 – Otago	73.35%	4.38%	3.77%	18.50%
14 – Southland	87.70%	0.70%	3.40%	8.21%
Auckland city	77.78%	11.30%	1.32%	9.59%
Hamilton city	82.96%	4.96%	3.08%	9.01%

⁵⁴ Stats NZ. (n.d.). Explore Census transport data. Accessed October 2025 from https://explore.data.stats.govt.nz/

54

Region	%Car	%PT	%Cycle	%Peds
Tauranga city	85.33%	2.92%	4.65%	7.10%
Wellington city	48.62%	28.51%	3.59%	19.29%
Christchurch city	77.74%	5.84%	7.20%	9.22%
Queenstown-Lakes District	79.27%	4.13%	5.77%	10.83%
National total	79.45%	7.46%	2.91%	10.19%

Accessibility to employment

Notes, caveats and limitations:

- Data is sourced from the Accessibility Toolkit (ATK).
- It uses network-based travel times (by mode) between household locations and employment locations. This uses recorded travel times for general traffic, bus timetables for PT and road network distance with a constant average speed applied for cycles (the default used in OpenTripPlanner, which is 5m/s = 18km/h).
- Measure 10.3.1 currently estimates accessibility to employment rather than social destinations.
 Further work is progressing using ATK to also include access to social destinations, which will be included in subsequent versions of this evidence pack.
- ATK has been used to estimate future accessibility in a very limited way by only looking at
 changes associated with land-use growth based on population and employment sub-regional
 projections (while keeping base year travel times by mode). It may be possible to improve this in
 future releases, where other tools (currently being developed) can provide suitable inputs to ATK
 regarding future network performance (including travel times).

10.3.1 Access to key social destinations (all modes)

Region	Mode	Current year	(2023)				
		0–5km	5–10km	10+km	0–5km	5–10km	10+km
01 – Northland	Car	31,292	30,536	35,034	36,807	35,913	40,486
	PT	16,850	5,845	869	19,200	7,465	1,311
	Cycle	29,138	19,854	2,377	34,068	24,541	3,369
02 – Auckland	Car	716,503	536,916	455,088	899,714	670,758	582,690
	PT	313,788	177,213	124,557	388,878	224,214	151,103
	Cycle	355,847	280,586	216,239	451,914	355,494	265,792
03 – Waikato	Car	133,357	133,999	213,804	176,632	177,837	276,406
	PT	69,881	25,929	9,321	95,049	33,744	12,351
	Cycle	104,923	82,607	16,567	140,886	112,340	21,034
04 – Bay of Plenty	Car	79,040	77,841	93,611	103,455	101,584	107,430
	PT	35,631	23,794	18,017	47,915	32,656	20,225
	Cycle	58,707	40,240	26,289	77,374	54,337	29,099
05 – Gisborne	Car	17,327	17,265	25,979	18,308	18,254	27,378
	PT	9,241	144	147	9,421	137	150
	Cycle	15,211	10,255	517	15,898	9,799	849
06 – Hawke's Bay	Car	72,436	71,160	165,625	82,291	81,101	186,660
	PT	18,570	12,495	21,930	20,305	13,607	26,451
	Cycle	27,802	26,148	59,881	30,745	29,448	70,751
07 – Taranaki	Car	36,869	36,779	81,917	41,180	40,985	91,527
	PT	17,946	6,379	3,989	19,839	7,537	4,939
	Cycle	27,594	21,814	5,315	30,784	26,806	6,171

08 – Manawatū-	Car	63,400	60,858	116,324	70,215	68,118	129,915
Whanganui	PT	42,455	8,809	12,769	47,710	12,863	14,373
	Cycle	49,725	27,467	15,275	55,486	31,480	16,815
09 – Wellington	Car	226,937	203,306	257,735	254,242	227,977	286,594
	PT	149,015	87,351	100,318	169,490	97,902	112,643
	Cycle	160,012	138,296	82,987	178,699	153,837	93,008
10a – Marlborough	Car	19,964	19,095	32,261	21,619	20,585	35,127
	PT	7,983	190	1,188	8,526	197	1,404
	Cycle	14,614	6,898	2,668	16,039	9,916	3,234
10b – Nelson/Tasman	Car 39,54		80,419	82,729	43,586	89,050	92,130
	PT	25,571	42,044	13,310	28,005	47,026	15,456
	Cycle	33,490	70,733	23,425	36,934	78,811	26,394
11 – Canterbury	Car	246,820	237,377	350,704	298,103	286,139	440,946
	PT	135,521	83,670	25,420	164,523	99,853	33,350
	Cycle	197,173	163,672	46,480	238,400	196,568	59,540
12 – West Coast	Car	6,225	6,455	14,589	5,843	6,196	13,893
	PT	3,757	183	1,862	3,445	210	2,326
	Cycle	5,537	4,664	3,015	5,099	4,604	3,432
13 – Otago	Car	59,213	58,364	112,598	62,075	61,521	128,941
	PT	45,898	27,674	13,916	48,301	33,897	16,699
	Cycle	53,343	41,614	12,458	55,959	47,303	15,473
14 – Southland	Car	32,733	33,106	69,145	34,463	34,638	71,342
	PT	20,598	10,281	2,169	21,320	13,138	2,138
	Cycle	27,027	22,387	4,685	28,399	26,232	4,374
National	Car	1,781,661	1,543,200	2,035,679	2,148,533	1,854,674	2,432,812
	PT	912,705	490,617	337,520	1,091,927	600,629	400,609
	Cycle	1,160,143	914,371	497,220	1,396,684	1,111,936	595,451

Appendix B: Intervention Catalogue

As part of the PIE programme, NZTA is developing the Intervention Catalogue (IC) tool, which compiles a wide range of empirical data relating to the implementation of transport projects and how effective they have been in achieving the intended outcomes. We'll continue to add to this over time, using data from benefit realisation associated with the investment logic mapping (ILM) process.

An AI interface for supporting queries and providing relevant evidence is currently being investigated.

For this evidence pack, a limited subset of data (related to 80 interventions) based on the <u>KonSULT</u> knowledgebase maintained by the University of Leeds in the UK, on sustainable urban land use and transport has been made available to demonstrate how IC might be applied to explore and identify the effectiveness of various interventions as part of the option formulation process.

Effectiveness is reported using a simple qualitative 1–5 scale that is indicative rather than absolute, and results may vary based on context.

The screenshot in Figure 4 shows the interventions we extracted from the KonSULT knowledgebase. This data is available in the summary spreadsheet: Extract-of-IC-KonSULT-data-(interventions-typology).xlsx.

Figure 4: Extract of IC KonSULT data

We've used the data shown in Figure 4 to create a draft interactive tool (<u>Spreadsheet-deficiency-to-intervention-example.xlsx</u>) that allows users to explore the effectiveness and trade-offs associated with a range of interventions that are associated with a user-specified list of issues or deficiencies.

The tables shown in the screenshots below are examples of how the tool can be used (and is not necessarily recommending any of the interventions currently selected).

User Inputs	Intervention Catalogue	Intervention Catalogue		4) Select Area Type	5) Review liklely effectiveness of se			
Issue/Deficiency	Intervention Group	IC Interventions	IC Lever		Effectiveness		Cost	
1) User to provide list of issues/deficencies below	2) User drop down menus to explore availble Groups	3) User drop down menus to explore Interventions in Group		Area	(1-5)		Min.	Max.
Consolidate growth, shorten trip lengths, co locating transport hubs with community services	Regulation (pricing and incentives)	Public transport fare reductions	Pricing	Tier 1	3	•	0	0
Design and Planning - adaptable 'scenarios-based' (defend, accommodate, retreat), identify critical routes, improve operational responses to events	Spatial and place-based planning	Design and Planning	Resiliance	Tier 1	C	1	0	0
perceived safety (incl. crime)	Deliver new or upgraded infrastructure and services	Safe system approach	Safe System	Tier 1	4		0	0
prioritise low risk low cost maintenance projects	Maintain and optimise existing networks and services	Maintaining the existing road network level of service	Infrastructure	Tier 1	3		0	1
Implement high quality improvements that bring about mode change	Maintain and optimise existing networks and services	Conversion of road capacity to shared and active modes	Optimisation	Tier 1	2	!	0	2
perceived safety (incl. crime)	Deliver new or upgraded infrastructure and services	Safe system approach	Safe System	Tier 1	4	1	0	0
rapid transport network	Spatial and place-based planning	Spatially integrated land use and transport networks	Multi-modal planning	Tier 1	4		0	1
Improved services	Deliver new or upgraded infrastructure and services	Fixed line mass public transport	Public transport	Tier 1	3		0	5
Road pricing	Regulation (pricing and incentives)	Time and distance based charges	Pricing	Tier 1	2		-4	0
PT Fares	Regulation (pricing and incentives)	Public transport fare reductions	Pricing	Tier 1	3		0	0
Road safety plans, safe speed limits, reduce dangerous behavior	Deliver new or upgraded infrastructure and services	Safe system approach	Safe System	Tier 1	4	1	0	0
Encourage Evs (low emission zones)	Maintain and optimise existing networks and services	Banning polluting vehicles from a defined area	Management	Tier 1	2	!	0	1
Encourage active modes	Deliver new or upgraded infrastructure and services	Networks for small, low powered, low speed transport devices	MAAS	Tier 1	4		0	1
Encourage active modes	Education and awareness	School based travel behaviour change	Travel reduction	Tier 1	4		0	1
Accessible infrastructure	Deliver new or upgraded infrastructure and services	On call shared transport	Public transport	Tier 1	2	!	0	1
Adaptable approach to road space management (e-scooters)	Deliver new or upgraded infrastructure and services	Networks for small, low powered, low speed transport devices	MAAS	Tier 1	4	1	0	1
More Freq Rail &PT Services	Deliver new or upgraded infrastructure and services	New rail services on existing lines	Public transport	Tier 1	1		0	3
Bus Priority	Maintain and optimise existing networks and services	Reduce journey times and improve reliability of bus services	Public transport	Tier 1	3		0	1

Figure 5: Example of using tool to explore overall effectiveness and cost of potential interventions based on a list of user specified deficiencies or issues (entered in the first column)

User Inputs	Intervention Catalogue					MoT Outo	ome(s)						
Issue/Deficiency	IC Interventions	Economic prosperity		Enviro	nment	ent Health		Inclusive access		Safety		Resilience	
User to provide list of issues/deficencies below	3) User drop down menus to explore Interventions in Group	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
Consolidate growth, shorten trip lengths, co locating	Public transport fare reductions												
transport hubs with community services		0	0	0	2	0	2	0	4	0	1	0	0
Design and Planning - adaptable 'scenarios-based'	Design and Planning												
(defend, accommodate, retreat), identify critical													
routes, improve operational responses to events													
		0	0	0	0	0	0	0	0	0	0	0	0
perceived safety (incl. crime)	Safe system approach												
		-2	2	-1	3	0	0	0	3	0	5	0	0
prioritise low risk low cost maintenance projects	Maintaining the existing road network level of	١.								١.	_		
	service	0	1	0	2	0	1	0	3	0	3	0	2
Implement high quality improvements that bring	Conversion of road capacity to shared and active												
about mode change perceived safety (incl. crime)	modes	-1	2	-1	3	-1	4	0	3	0	3	0	0
perceived safety (inci. crime)	Safe system approach	-2	2	-1	3	0	0	0	3	0	5	0	0
rapid transport network	Spatially integrated land use and transport	-2	2	-1	5	"	U	"	3	"	5	"	U
rapid transport network	networks	0	3	0	2	0	3	0	4	0	3	0	0
Improved services	Fixed line mass public transport	-	3	"	- 4	"	- 3	"		"	3	"	U
improved services	rixed line mass public dansport	-1	3	0	2	0	0	0	2	0	3	0	0
Road pricing	Time and distance based charges	0	3	0	4	0	3	-3	3	0	3	0	0
PT Fares	Public transport fare reductions	0	0	0	2	0	2	0	4	0	1	0	0
Road safety plans, safe speed limits, reduce	Safe system approach									*		*	
dangerous behavior	,	-2	2	-1	3	0	0	0	3	0	5	0	0
Encourage Evs (low emission zones)	Banning polluting vehicles from a defined area												
		-2	0	0	1	0	4	-2	0	0	1	0	0
Encourage active modes	Networks for small, low powered, low speed												
	transport devices	0	0	-1	1	0	0	0	2	-1	0	0	0
Encourage active modes	School based travel behaviour change	0	1	0	3	0	3	0	1	0	4	0	0
Accessible infrastructure	On call shared transport												
		0	0	0	1	0	1	0	3	0	1	0	0
Adaptable approach to road space management	Networks for small, low powered, low speed												
(e-scooters)	transport devices	0	0	-1	1	0	0	0	2	-1	0	0	0
More Freq Rail &PT Services	New rail services on existing lines												
		0	0	0	2	0	2	0	3	0	2	0	0
Bus Priority	Reduce journey times and improve reliability of												
	bus services	0	2	0	2	-1	2	0	3	0	2	0	0

Figure 6: Example of using tool to explore overall trade-offs between outcomes associated with potential interventions

