

Evidence pack

Introduction and national summary

June 2025

Version 1.0

Copyright information

Copyright ©. This copyright work is licensed under the Creative Commons Attribution 4.0 International licence. In essence, you are free to copy, distribute and adapt the work, as long as you attribute the work to NZ Transport Agency Waka Kotahi (NZTA) and abide by the other licence terms. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Disclaimer

NZTA has endeavoured to ensure material in this document is technically accurate and reflects legal requirements. However, the document does not override governing legislation. NZTA does not accept liability for any consequences arising from the use of this document. If the user of this document is unsure whether the material is correct, they should refer directly to the relevant legislation and contact NZTA.

More information

NZ Transport Agency Waka Kotahi Published June 2025 Version 1.0

If you have further queries, call our contact centre on 0800 699 000 or write to us:

NZ Transport Agency Waka Kotahi Private Bag 6995 Wellington 6141

Contents

Introduction to the <i>Evidence pack</i>	5
The purpose of this evidence pack	5
What the evidence pack is not	5
Benefits of the evidence pack	5
What's in the evidence pack?	5
How to use this evidence pack (user guide)	5
Sources of data in the evidence pack	6
Introduction to the national summary	7
What's in this national summary?	7
National overview	7
Road network	7
Rapid transit	7
Public transport	7
Walking and cycling	8
Rail	8
Strategic measures – current and future	9
Healthy and safe people	9
Insights	9
Resilience and security	10
Insights	10
Economic prosperity	10
Insights	11
Environmental sustainability	11
Insights	11
Inclusive access	11
Insights:	12
Current and future challenges	13
Key network challenges – national context	13
Maintaining existing networks	13
Access to opportunities and enabling the efficient movement of freight around the country	13
Resilience to natural hazards and climate change	14
Congestion and capacity constraints, especially in large and growing cities	15
Reducing the level of harm to people and the environment	15
State highway hotspots	16
Key insights	16
Appendix A: Data sources for the strategic measures	19
Healthy and safe people	19

Infrastructure risk rating (safety)	21
Resilience and security	22
Economic prosperity	23
5.1.2 Travel time reliability – motor vehicles	24
5.1.3 Travel time delay	24
5.2.3 Freight – mode share weight – base year 2024	25
5.2.3 Freight – mode share weight – future year 2048	25
Environmental sustainability	26
8.1.1 Greenhouse gas emissions (all vehicles)	27
8.1.3 Light vehicle use impacts	27
Inclusive access	28
10.2.1 People – mode share	28
Accessibility to employment	29
10.3.1 Access to key social destinations (all modes)	29

Introduction to the Evidence pack

The purpose of this evidence pack

This pack is intended to help in the preparation of the strategic front end of regional land transport plans (RLTPs).

It does this by providing a consistent set of data and information setting out the current and future state of New Zealand's transport system at a national and regional level, and what interventions are likely to be effective to address identified deficiencies.

This iteration (version 1, June 2025) is the first step in the collaborative development with the sector of consistent and comprehensive evidence and information. For future iterations we will be drawing on your feedback to iteratively improve it and close any data and analysis gaps.

What the evidence pack is not

The evidence pack is intended as a useful addition to the toolbox that NZTA and the wider sector have at our disposal, however:

- It is not intended to be prescriptive or to replace local knowledge, judgement or local prioritisation of investment activities.
- Use of evidence and/or insights from the pack is not mandated or considered to be a 'compliance' criterion.
- The evidence may or may not support or reflect current government policy. It is meant to be a technical evidence document, rather than a policy or strategic document in and of itself.

Benefits of the evidence pack

The key benefits include:

- locating evidence from a number of sources in one place
- aligning each region at the national level
- bridging gaps between focus areas, deficiencies and option formulation
- providing context in which various types investments are most effective
- being a starting point to reconcile with the sector's own views of the transport system.

What's in the evidence pack?

The complete evidence pack is available on the Transport Insights portal.

There you will find:

- this introduction and national summary, which gives you more background to the pack, its purpose and where the information and data are sourced from, and provides an overview for the whole country
- a section for each region, with data and information specific to that region, and discussion of how it fits into the national network.

How to use this evidence pack (user guide)

You will be using this evidence pack to find information, data and evidence to help in your transport planning. While you will likely be focusing on your own region, you can refer to national information and information from other regions as comparisons and to understand interconnections.

Each section follows a similar structure, which moves from providing context, to looking at specific challenges, through to identifying where to best focus effort and investment, and suggesting solutions:

- Regional (or national) overview a brief overview of the region.
- **Strategic measures** which looks at how the region (or country) currently rates against the 14 strategic measures, and how it is expected to change over time
- Strategic measures which looks at how the region currently rates against the 14 strategic measures from the Land Transport Benefits Framework, and how it is expected to change over time.
- Current and future challenges specific issues for the region to address.
- **Focusing effort** identifies key areas to focus investment in the short and longer term, and includes targeted suggestions of potential interventions.
- **Appendices** more background information, including data sources for the strategic measures and potential intervention.

Sources of data in the evidence pack

This evidence pack draws on existing information available, including:

- <u>Arataki</u> NZTA's strategic direction for New Zealand's land transport system, focusing on long-term outcomes to guide planning, development, and investment over the next 30 years
- regional plans and strategies that identify key challenges and opportunities, for example Auckland Transport's <u>Future Connect</u> in the Auckland region section
- NZTA's <u>Land Transport Benefit Framework</u> outcomes and measures that have a strong influence on decision making and NLTP funding within NZTA
- NZTA's Transport data and tools
- other publicly available data, including from regions and Stats NZ.

Introduction to the national summary

The national summary provides an overview of the challenges and issues for the transport system at a country-wide level. You can see how your region compares to national averages and can use the national data for benchmarking.

What's in this national summary?

- National overview a brief overview of New Zealand's transport network.
- Strategic measures which looks at how the country as a whole currently rates against the 14 strategic measures from the Land Transport Benefits Framework, and how it's expected to change over time.
- Current and future challenges specific issues to be addressed on a national scale.
- Appendix data sources for the strategic measures.

National overview

The land transport system must be safe, resilient, and connected. It's critical for the health and wellbeing of New Zealanders for them to have easy and affordable access to employment, education, and essential services. The land transport system supports economic prosperity by facilitating the movement of domestic and international goods get to market. It plays a key role in improving wellbeing and liveability.

Road network

Roads are a dominant infrastructure element of our domestic transport system. Roads enable journeys by private motor vehicle, heavy vehicles, buses, bicycles and foot. Road corridors support other important infrastructure like water, power, gas and telecommunications networks. Road transport makes up 84% of land freight movement, and it has increased over time, from 19 billion tonne-kilometres in 2005/06 to 30.1 billion tonne-kilometres in 2017/18.

Rapid transit

Rapid transit forms the backbone of public transport networks in Auckland and Greater Wellington. It provides fast, frequent, and reliable access for large numbers of people. It uses strategic corridors that are separated from other modes and largely unaffected by traffic outside of the rapid transit system. Rapid transit plays a key role in the wider transport networks of these large urban areas, by connecting and providing access to centres of activity and allowing large volumes of people to travel quickly, efficiently, and reliably.

Public transport

Public transport supports efficient movement to a large and diverse range of people and can generate many benefits, depending on where it operates, and the services provided. It is a space-efficient, travel option, ideal for journeys within, to, and between urban areas, and doesn't require private vehicle ownership or use. The term 'public transport' has historically been associated with trains, buses, and ferries that take people from one place to another on fixed routes, at regular times or frequencies. These modes of public transport can be complemented by other forms of shared transport such as cable cars or on-demand services in smaller vehicles.

¹ Ministry of Transport (2019). *National freight demand study 2017/18*. https://www.transport.govt.nz/assets/Uploads/Report/NFDS3-Final-Report-Oct2019-Rev1.pdf

Walking and cycling

Walking and cycling are the most affordable modes of transport. These healthy and sustainable modes support vibrant towns and cities and are good choices for short trips (65% of trips in New Zealand are under 5km in length²). Use of walking and cycling varies greatly around the country because of land-use patterns, quality of networks and levels of service (such as comfort, safety, and convenience). While current walking and cycling numbers are relatively low, there is high demand for better infrastructure for both. In urban centres, 75% say they would cycle more if the network better met their needs.³

Rail

The rail network consists of the Main Trunk Line stretching from Auckland to Invercargill. It's connected across the Cook Strait by ferry with spurs to Northland, Bay of Plenty, Taranaki, Hawke's Bay, and West Coast. Rail serves all ports except Northport (Marsden), Gisborne, and Nelson. The rail network is used for regional passenger connections and for rapid transit in Auckland and Greater Wellington. However, the rail network's key use is freight, transporting around 25% of New Zealand's exports and has an advantage over road for moving heavy goods over longer distances.⁴ Currently, 87% of net tonne-km are carried by road and 13% carried by rail. Rail provides a lower-carbon alternative for freight transportation when compared with road, with 66% fewer carbon emissions per tonne of freight moved.⁵

² NZTA (2022). *Benchmarking sustainable urban mobility*. https://nzta.govt.nz/resources/sustainable-urban-mobility-benchmarking

³ Waikato Regional Council (2013). *The costs of physical inactivity*. https://www.waikatoregion.govt.nz/assets/WRC/Services/publications/The Costs of Physical Inactivity.PDF

⁴ KiwiRail (2017). Statement of corporate intent 2017–2019. https://www.kiwirail.co.nz/assets/Uploads/documents/Statement-of-Corporate-Intent-SCI/be6be870ff/KR-SCI-2017-2019.pdf

⁵ Sustainable Business Council (2016). *Sustainable procurement guidelines for freight*: https://www.sbc.org.nz/wp-content/uploads/2022/07/Sustainable-procurement-guidelines-for-freight.pdf

Strategic measures – current and future

This section provides tables summarising the 14 strategic measures in relation to the whole country. The data and evidence used to produce these results is included in <u>Appendix A</u>.

The 14 strategic measures are a subset of 60+ measures included in the <u>Land Transport Benefits Framework</u>. They have been selected to provide a coarse but practical overview of the Ministry of Transports five broad Transport Outcomes, illustrated in the figure.

The tables provide indicative current and future values for the 14 strategic measures (grouped by outcome), to understand how each measure (and therefore outcome) is likely to change if there is no significant investment (beyond that already committed).

More detail about the measures can be found in the Land Transport Benefits Framework measures manual.

Healthy and safe people

Benefit framework measure	Units	Current (2023/24)	Future (2048)	Change
1.1.1 Collective risk (crash density)	Average annual fatal and serious per kilometre of road section	0.028	0.036	0.008 (+29%)
1.1.3 Deaths and serious injuries (DSIs)	Number of DSIs (annual)	2713	3463	750 (+28%)
1.1.4 Personal risk (crash rate)	Average annual DSI per 100 million vehicle kilometres	5.451	5.0451	0 (0%)
1.2.1 Road assessment rating – roads	Average infrastructure risk rating	High: 23.21% Medium-high: 26.75% Medium: 34.25% Low-medium: 13.50% Low: 2.29%		N/A

Insights

- Refer to <u>Appendix A</u> to see how each region contributes to the above national totals.
- Refer to individual regional chapters available on the <u>Transport Insights portal</u> for insights related specifically to each region.

Resilience and security

Benefit framework measure	Units	Current (2023/24)	Future (2048)	Change
4.1.1 Availability of a viable alternative to high-risk and high-impact route	Percentage of high-risk, high-impact route with a viable alternative	Not included in this release		
4.1.2 Level of service and risk (note that for this evidence pack this data is from the National Resilience Assessment Tool (NRAT) and includes only state highways)	Number of identified sites in region by combined risk rating (future, geological and hydrological)	Low: 1393 Med: 1061 High: 820 Critical: 257 Not yet rated: 1070	N/A	N/A

Insights

- Refer to Appendix A to see how each region contributes to the above national totals.
- Refer to individual regional chapters available on the <u>Transport Insights portal</u> for insights related specifically to each region.

Economic prosperity

Benefit framework measure	Units	Current (2024)	Future (2048)	% Change
5.1.2 Travel time reliability – motor vehicles (note for this evidence pack, the data only relates to state highway traffic monitoring system (TMS) sites)	Calculated using coefficient of variation (CoV); standard deviation of travel time divided by average minutes travel time Rate: Low <0.3, Medium 0.3–0.6, High >0.6)	Low: AM 7% Day 1% Med: AM 16% Day 4% High: AM 77% Day 95%	Low: N/A% Med: N/A% High: N/A%	Low: N/A% Med: N/A% High: N/A%
5.1.3 Travel time delay	Difference between average travel time during AM peak and average travel time during the Inter Peak in minutes per kilometre (by mode) as a percentage	Car: 8% PT: N/A Cycle: N/A	Car: N/A PT: N/A Cycle: N/A	Car: N/A PT: N/A Cycle: N/A
5.2.2 Freight – mode share value	Percentage of value for each mode	Not included in this release		
5.2.3 Freight – mode share weight	Percentage of weight for each mode	Road: 87% Rail: 13%	Road: 90% Rail: 10%	Road: +3% Rail: -3%

Insights

- Refer to Appendix A to see how each region contributes to the above national totals.
- Refer to individual regional chapters available on the <u>Transport Insights portal</u> for insights related specifically to each region.

Environmental sustainability

Benefit framework measure	Units	Current (2023)	Future (2048)	Change
8.1.1 Greenhouse gas emissions (all vehicles)	Annual tonnes of CO ₂ equivalents (CO ₂ -e) emitted	13.83 m	8.29 m	-5.54 m (-40%)
8.1.3 Light vehicle use impacts	Annual light vehicle kilometres travelled (light VKT)	42,250 m	58,062 m	+12,812 (+28%)

Insights

- Refer to Appendix A to see how each region contributes to the above national totals.
- Refer to individual regional chapters available on the <u>Transport Insights portal</u> for insights related specifically to each region.

Inclusive access

Benefit framework measure	Units	Current	t (2023)			Future	(2048)			% Char	ıge		
10.2.1 People – mode share	Percentage by mode (Census (2023) journey to work and education)	Car: 7 PT: Cycle: Peds: 1	7.5% 2.9%			_				_			
10.3.1 Access to key social destinations (all modes)	Number of jobs (x1000) accessible by mode in AM peak (car 40 min, PT 45 min, cycle 45 min) and distance from city centre (km)	Car: PT: Cycle:	0-5 1782 913 1160	5-10 1543 491 914	10+km 2036 338 497	Car: PT: Cycle:	0-5 2149 1092 1397	5-10 1855 601 1112	10+km 2433 401 595	Car: PT: Cycle:	0-5 21% 20% 20%	5-10 20% 22% 22%	10+km 20% 19% 20%

Insights:

- Refer to Appendix A to see how each region contributes to the above national totals.
- We do not currently have the capability to estimate future mode change at the national level. However, future year values are provided in selected regional chapters where multi-modal transport models have been utilised (Auckland, Waikato, Wellington and Christchurch).
- Refer to individual regional chapters available on the <u>Transport Insights portal</u> for insights related specifically to each region.

Current and future challenges

Key network challenges - national context

New Zealand's transport networks are extensive and vital for the country's connectivity and economic prosperity. The state highway network spans about 11,750km,⁶ while the local road network covers about 83,368km.⁷ Additionally, the rail network consists of around 4128km of rail lines.⁸

Maintaining existing networks

Maintaining such a vast network requires significant effort. Annually, 5–10 percent of the road network (4750km to 9500km) needs resurfacing or rebuilding. The network includes nearly 4200 bridges on state highways and about 15,000 on local roads. Urban growth and higher traffic volumes, especially of heavy vehicles, increase maintenance needs, which strains budgets. Neglecting maintenance can lead to safety risks, higher long-term costs, and disrupted connectivity. 12

Looking ahead, future challenges are expected to intensify. Climate change is likely to increase the frequency and severity of extreme weather events, such as flooding and heatwaves, which can damage infrastructure and accelerate wear and tear. Technological advancements, such as the rise of electric and autonomous vehicles, may require new types of infrastructure and maintenance protocols. Additionally, population growth and urban sprawl will create pressure to further expand the network, which will lead to increasing the scale and complexity of maintenance operations.

Access to opportunities and enabling the efficient movement of freight around the country

The transport system underpins economic and social wellbeing, ensuring access to jobs, education, healthcare, and efficient freight movement. Remote and rural areas face significant access challenges, especially during adverse weather. These challenges include a lack of alternatives to private vehicle trips as public transport services are not a viable alternative because of coverage and frequency. In addition, there is a lack of redundancy in parts of the land transport system – some places rely on one or 2 critical lifelines to stay connected.

Looking ahead, existing access challenges in remote and rural areas will be exacerbated by the impacts of climate change and demographic change. The population is expected to remain static or decline in smaller, rural, and remote districts. In some areas, people aged over 65 are expected to make up more than 35 percent of the population. The affordability of local government rates increases will be an issue in these areas. Network resilience will be further challenged as damage caused by climate change becomes more frequent, outages last longer and repair costs increase. Rural and coastal communities may become increasingly isolated and have difficulty accessing essential services – this may particularly impact Māori.

Freight is a key part of economic activity and is fundamental to making places great to live (liveability). ¹³ The efficient movement of freight is essential for economic productivity. Current freight

NZ Transport Agency Waka Kotahi

⁶ NZTA (n.d.). State highway frequently asked questions. https://www.nzta.govt.nz/roads-and-rail/research-and-data/state-highway-frequently-asked-questions/

⁷ Ministry of Transport (n.d.). Statistics and insights. https://www.transport.govt.nz/statistics-and-insights

⁸ Stats NZ (n.d.). Transport. https://www.stats.govt.nz/topics/transport

⁹ NZTA (n.d.). Road management and maintenance. https://nzta.govt.nz/roads-and-rail/management-and-maintenance/

¹⁰ NZTA (n.d.). Bridges and structures. https://www.nzta.govt.nz/roads-and-rail/bridges-and-structures/

¹⁷ Figure.NZ (n.d.). Number of bridges on local roads in New Zealand. https://figure.nz/chart/nHM7UwJuYIrWnLdT

¹² Government of New Zealand (n.d.). Government Policy Statement on land transport 2024–34. https://www.transport.govt.nz/assets/Uploads/Government-Policy-Statement-on-land-transport-2024-FINAL.pdf

¹³ Auckland Transport (2020). Auckland freight plan. https://at.govt.nz/media/1983982/auckland-freight-plan.pdf

inefficiencies such as delays, detours and highly variable travel times can increase costs by up to 20 percent.¹⁴

Looking ahead, total freight volume is expected to increase by 39 percent by 2053. The location of freight origin and destination may change. A growing population in the largest urban areas means more goods will need to be moved to these locations, and industry and population concentration is occurring in the upper North Island. Climate change is expected to change the nature and location of primary production and increase the frequency of extreme weather events, disrupting transport networks, isolating communities, and affecting freight reliability. Technological shifts, including the rapid growth of e-commerce and the transition to low-emission freight vehicles, will require significant infrastructure upgrades and new logistics strategies to ensure efficiency and sustainability. The

Resilience to natural hazards and climate change

New Zealand faces significant natural hazard risks, including earthquakes, floods, and cyclones, worsened by climate change. The land transport system has always been exposed to natural hazard risks, with minor closures or delays through small scale events like slips and localised flooding common. However, the network is increasingly exposed to national and regional scale events such as Cyclones Hale and Gabrielle and the Kaikoura earthquakes that caused widespread and significant damage. For instance, Cyclone Gabrielle alone caused damage estimated at \$13.5 billion. 19

Recovery from small events is quick, but larger events, such as Cyclone Gabrielle, cause extensive damage and long recovery times. The state highway network performs critical lifeline functions for communities, and repeated disruption to these functions impacts communities' access to the services they need.

Looking ahead, the land transport system will have to adapt to escalating impacts from natural hazards and climate change now and into the future. These impacts include sea-level rise and ongoing changes in the physical environment, as well as increasingly severe and frequent climate-related events such as storms, flooding, droughts, and wildfires.²⁰ The probability of an Alpine Fault earthquake occurring in the next 50 years is 75 percent, and there is a 4 out of 5 chance that it will be a magnitude 8+ event.²¹ Such an event has the potential to cause severe damage and disruption across the entire South Island, with major consequences for the rest of the country.

These types of impacts will continue and will affect communities and the transport networks that connect them. As damage becomes more frequent, outages last longer and repair costs increase, rural and coastal communities may become increasingly isolated and have difficulty accessing

¹⁴ Ministry of Transport (2023). Aotearoa New Zealand Freight and Supply Chain Strategy. https://www.transport.govt.nz/assets/Uploads/MOT4806 Aotearoa-Freight-and-Supply-Chain-Strategy-p09-v03 pdf

¹⁵ Ministry of Transport (2019). *New Zealand transport outlook – Freight model*. https://www.transport.govt.nz/assets/Uploads/Data/Transport-outlook-updated/Freight-Model-Version-2-Documentation-20190423.pdf

¹⁶ KPMG & The Aotearoa Circle (2024). *Transport sector climate change scenarios: Report on big climate risks to New Zealand's transport sector.* https://kpmg.com/nz/en/home/media/press-releases/2024/06/report-on-big-climate-risks-to-new-zealand-s-transport-sector.html

¹⁷ Ministry of Transport (n.d.). Climate change — emissions work programme. https://www.transport.govt.nz/area-of-interest/environment-and-climate-change/climate-change

¹⁸ Byett, A, et al (2019). *Climate change adaptation within New Zealand's transport system*. Motu Economic and Public Policy Research. https://www.motu.nz/our-research/environment-and-resources/climate-change-impacts/climate-change-adaptation-within-new-zealands-transport-system

¹⁹ NIWA (2024). Cyclone Gabrielle was intensified by human-induced global warming. https://niwa.co.nz/news/cyclone-gabrielle-was-intensified-human-induced-global-warming

²⁰ NZTA (2022). *Tiro Rangi: our climate adaptation plan 2022–2024*. <a href="https://www.nzta.govt.nz/assets/resources/tiro-rangi-our-climate-adaptation-plan-2022-2024/tiro-rangi-ou

²¹ AF8 (2022). *AF8 Programme Strategy 2022–25*. https://af8.org.nz/media/fpxjy3uu/af8 programme-strategy-2022-25-jul22.pdf

essential services, and this may especially impact Māori. In urban areas, the impacts of climate change on multimodal networks can be complex, widespread and cascade across the land transport system. Interregional connections will also be disrupted.

Congestion and capacity constraints, especially in large and growing cities

New Zealand's road network is a vital part of the country's infrastructure, with significant portions now facing congestion and capacity constraints. This is particularly evident in Auckland, where congestion costs are estimated to range between \$1.3 billion and \$2.6 billion annually.²²

The demand for transport in New Zealand has grown rapidly, meaning that in some places the demand exceeds the ability of the transport system to cater for it. This has resulted in frequent congestion across parts of the road and public transport networks, particularly on motorways in Auckland, Tauranga, Wellington, Queenstown and Christchurch. Previously confined to 'rush hour' periods, congestion has steadily lengthened and worsened over time.²³ Congestion on the local road network is a growing concern, especially in urban areas. Rail network capacity restraints currently affect both public transport services in Auckland and Wellington, and freight movements across the country. Population growth, dispersed land use patterns, and increasing vehicle ownership will continue to contribute to this issue into the future.

Looking ahead, a growing population in the largest urban areas means more people who need to get to work, education, business and entertainment. New Zealand's population is projected to reach over 6 million by the early 2030s, with much of this growth concentrated in urban areas.²⁴ This, combined with dispersed land use and rising vehicle ownership – currently at nearly 0.9 vehicles per person – will further strain transport corridors and worsen congestion.²⁵ Without significant investment, it is likely congestion will worsen, network productivity will fall, and emissions will rise. Future challenges include adapting for electric and autonomous vehicles, building resilience to climate impacts and reducing emissions through urban planning, mode shift and fleet carbonisation.

Reducing the level of harm to people and the environment

New Zealand's land transport system faces significant safety and environment challenges. In 2024, there were 292 road fatalities, placing New Zealand 7th highest in road deaths per capita among 35 OECD countries. Contributing factors include adverse weather, unsafe driving behaviour, and poor road conditions. Rural road fatalities are disproportionately high, accounting for 60 percent of all road deaths, despite rural roads making up only 40 percent of the network. Proceedings of the network.

Air pollution from fossil fuels and particulate matter continues to impact public health, contributing to an estimated 2247 deaths in 2016.²⁸ While low-emission vehicles are essential for reducing transport-related emissions, they are not a complete solution. A broader systems approach – encompassing

https://www.nzta.govt.nz/assets/resources/research/reports/489/docs/489.pdf

_

²² NZTA (2013). The costs of congestion reappraised.

²³ NZTA (2024). Significant land transport challenges facing New Zealand.

 $[\]underline{\text{https://www.nzta.govt.nz/assets/planning-and-investment/nltp/2024/docs/significant-challenges-nltp-2024-27.pdf}$

²⁴ NZTA (n.d.). Significant land transport challenges facing New Zealand.

 $[\]underline{\text{https://www.nzta.govt.nz/assets/planning-and-investment/nltp/2024/docs/significant-challenges-nltp-2024-27.pdf}$

²⁵ NZTA (n.d.). Significant land transport challenges facing New Zealand.

https://www.nzta.govt.nz/assets/planning-and-investment/nltp/2024/docs/significant-challenges-nltp-2024-27.pdf

²⁶ International Transport Forum (2024). Road safety country profile – New Zealand 2023. https://www.itf-oecd.org/sites/default/files/new-zealand-road-safety.pdf

²⁷ Stats NZ (n.d.). Transport. https://www.stats.govt.nz/topics/transport

²⁸ Emission: Impossible Ltd and the HAPINZ 3.0 team (2022) Key findings from HAPINZ. https://ehinz.ac.nz/projects/hapinz3/key-findings-from-hapinz/

clean energy, sustainable manufacturing, and urban planning – is needed to fully address environmental harm.²⁹

The impact on the environment, including climate, on and from the transport network and its use is another pressing issue. The extensive road system crosses many sensitive ecosystems, habitats, and waterways, leading to habitat fragmentation, noise pollution, artificial light, and stormwater discharges.

Looking ahead, climate change is expected to intensify these impacts because of more frequent extreme weather events, increased infrastructure stress, and greater disruption to both human and natural systems. Future challenges will also include managing the environmental footprint of new transport technologies and ensuring that safety improvements keep pace with population growth and the needs of changing demographics (such as people with children), travel patterns (increased travel by older people) and vehicle types, while also taking advantage of new technologies (for example cooperative intelligent transport systems and alternatives to bitumen) to improve safety and environmental outcomes.

State highway hotspots

The current state highway network has many deficiencies that require attention over the next 30 years. Many of these issues are due to resilience challenges posed by New Zealand's complex geology and climate. Additionally, congestion and capacity constraints, especially in our large and growing cities, and the level of harm to people using the network, further exacerbate these deficiencies

The state highway network plays an important role in the land transport system. Maintaining it efficiently and effectively is essential, which means focusing our efforts on where they are needed most. The maps below support this process by heling to identify and assess the areas of greatest need across the state highway network.

The maps show the cumulative deficiencies across the state highway network, based on three risk factors for a road corridor: resilience, reliability of the journey, and safety. While some parts of the network have a generally low-risk profile, other sections – particularly those serving our biggest cities – show a much higher-risk profile.

Key insights

In isolated parts of the country there are no local roading network or other transport options available, making the state highway network essential. They carry critical electricity, communications, and water infrastructure, particularly across bridges, serving as lifelines for both large and small communities. These highways are crucial for reconnecting communities, delivering emergency services, supplies, and replacement parts to power and communication networks after severe weather events.

For Tier 1 cities such as Auckland, Hamilton, Tauranga, Wellington and Greater Christchurch, it is a deficiency story dominated by road congestion and capacity constraints. The focus in these cities should be in improving road corridor efficiency in order to accommodate the uplift in traffic driven by economic and population growth. Auckland's already saturated road network will have to adapt to servicing the transport needs of an additional 459,000 citizens by 2048.

Other parts of the state highway network have a deficiency story characterised by high resilience risks but low traffic volume. This is typical of SH6 in West Coast and SH35 in the Gisborne regions. In both cases the road corridors provide a critical lifeline function for local communities. Other smaller cities can have very localised deficiencies driven by a combination of risks, such as SH6 in central Nelson and SH14 in Whangārei.

_

²⁹ Auckland Council (2022). *Transport emissions reduction pathway*. https://www.aucklandcouncil.govt.nz/plans-projects-policies-reports-bylaws/our-plans-strategies/Documents/transport-emissions-reduction-pathway.pdf

More detailed insights about state highway hotspots in each region are in the regional chapters of the evidence pack.

Figure 1: North Island cumulative (resilience, reliability and safety) deficiencies across the state highway network (source: NZTA data³⁰)

NZ Transport Agency Waka Kotahi

³⁰ Analysis of NZTA National Resilience Assessment Tool (NRAT), NZTA average annual daily traffic and NZTA cumulative risk using DSI data from 2019 to 2023.

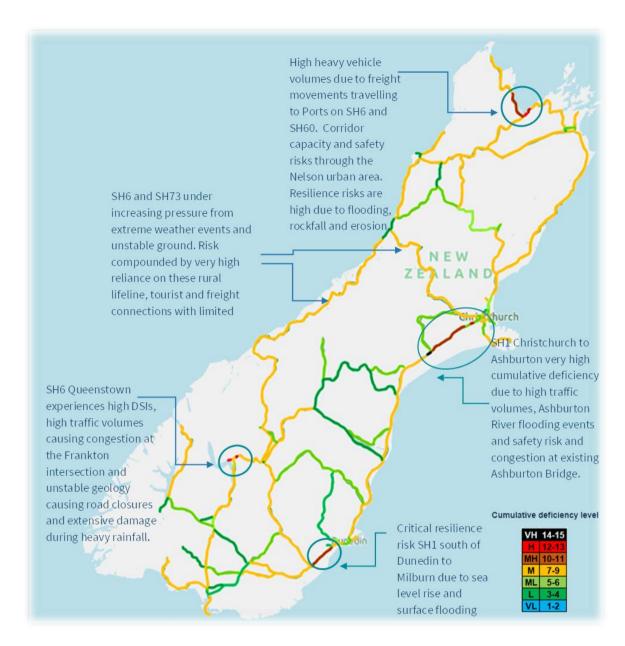


Figure 2: South Island cumulative (resilience, reliability and safety) deficiencies across the state highway network (source: NZTA data³¹)

³¹ Analysis of NZTA National Resilience Assessment Tool (NRAT), NZTA average annual daily traffic and NZTA cumulative risk using DSI data from 2019 to 2023.

Appendix A: Data sources for the strategic measures

This appendix references all relevant data sources and assumptions for the 14 strategic measures reported within each regional chapter.

Because this is the first attempt at providing the evidence pack, and the development of the associated tools and processes under the Planning and Investment Evidence base (PIE) programme is still ongoing. we do not yet have the full capability to report outputs for all measures, particularly for future years. In these instances, we have noted that the data is 'not available' by using the 'N/A' abbreviation as a placeholder until such time this can be addressed by a subsequent version of the evidence pack.

Similarly, the process has identified the need for better understanding and reporting of data quality ratings, version control and internal consistency (that is, a single source of truth). These are all things we intend to improve in subsequent releases.

Bearing the above in mind, we have adopted the following general convention for this version in how we report numbers:

- For large numbers, only report 3-4 significant figures (and using rounding units of thousands or
- For small numbers (including percentages), report to one decimal place by default, but make exceptions where appropriate (for example where more or less detail is required to make meaningful comparisons).

The focus is on convenience and the useability of the data. As such, it doesn't necessarily imply a particular level of accuracy (especially for future year forecasts, which have a great deal of uncertainty associated with them).

Each section below (grouped by outcome) provides data for all regions to allow comparison in terms of how each region contributes to the national total. It also provides any important caveats and limitations associated with each of the measures for that outcome.

Healthy and safe people

To understand the current and future safety risk both at the regional and national level, we calculated deaths and series injuries, personal risk and collective risk as shown in the following table. More details can be found in the Land Transport Benefits Framework.

Benefit framework measure	Units
1.1.1 Collective risk (crash density)	Average annual fatal and serious per kilometre of road section
1.1.3 Deaths and serious injuries (DSIs)	Number of DSIs (annual)
1.1.4 Personal risk (crash rate)	Average annual DSI per 100 million vehicle kilometres

Notes, caveats and data limitations:

- Data for the number of deaths and series injuries (DSIs) is sourced from the Crash Analysis System (CAS) database managed by NZTA.
- Regional VKTs and network length in kilometres is sourced from the NZTA official data published for financial year 2023/24.32
- Generally, DSI measures are calculated as multi-year rolling average. However, because of time and resource constraints the following data is for the financial year 2023/24 only.
- Future year growth factor is based on regional VKT change. This method to calculate this change is discussed in more detail for the 'E.4 Environmental sustainability' section later in this appendix.

³² https://www.nzta.govt.nz/planning-and-investment/learning-and-resources/transport-data/data-and-tools/

- It is assumed that crash rates remain constant over time. This is consistent with safety expert advice that application of crash trend adjustment factors for long term future predictions may no longer be supported by evidence.
- Future year DSIs were estimated based on the regional change on VKT (all vehicles) between 2023 and 2048 adopted for the GHG emissions measure (8.1.1). This assumes the crash rate (per VKT) remains constant (that is, no crash trend reduction factors applied).

Region	Current 2023	/24		Future 2048		
	DSIs#	Per km	Per 100 million VKT	DSIs#	Per km	Per 100 million VKT
01 – Northland	181	0.027	7.783	176	0.026	7.554
02 – Auckland	593	0.073	4.267	924	0.114	6.651
03 – Waikato	416	0.035	6.372	501	0.042	7.678
04 – Bay of Plenty	184	0.038	5.321	210	0.044	6.059
05 – Gisborne	33	0.015	7.779	37	0.016	8.737
06 – Hawke's Bay	125	0.027	7.005	145	0.031	8.135
07 – Taranaki	82	0.021	6.293	97	0.024	7.429
08 – Manawatū-Whanganui	234	0.026	7.718	231	0.026	7.619
09 – Wellington	171	0.039	4.671	230	0.052	6.289
10 – Top of the South	117	0.027	6.868	151	0.035	8.848
11 – Canterbury	346	0.021	5.007	480	0.030	6.942
12 – West Coast	43	0.014	7.548	43	0.014	7.545
13 – Otago	137	0.013	4.799	142	0.013	4.968
14 – Southland	51	0.007	3.877	53	0.007	4.024
15 – Chatham Islands	0	0.000	0.000	0	0.000	0
National	2713	0.025	5.451	3419	0.035	5.055

Infrastructure risk rating (safety)

We calculate strategic measure 1.2.1 Road assessment rating to understand the current situation of infrastructure risk both at regional and national level. This measure can be used for any safety-related investment benefits, particularly those that target road infrastructure to improve safety. It is a comprehensive measure that considers land use, road type, alignment, average annual daily traffic (AADT), intersection density, land and shoulder width, roadside hazards and access density. More details can be found in the Land Transport Benefits Framework.

Benefit framework measure	Units
1.2.1 Road assessment rating – roads	Average infrastructure risk rating

Notes, caveats and data limitations:

- Data to calculate the regional infrastructure risk rating (IRR) measure in the following table is sourced from Megamaps, which is a geospatial platform managed by NZTA.³³
- IRR data used to calculate regional and national measure values in the following table was calculated in Megamaps in 2024. The raw data used is for the period 2019–23.
- The data in Megamaps is for each road segment, intersection or corridor. We have aggregated it to calculate regional percentages under each risk band.

Region	High	Medium- high	Medium	Low- medium	Low
01 – Northland	45.77%	26.44%	18.74%	8.34%	0.71%
02 – Auckland	14.92%	17.54%	48.12%	13.18%	6.24%
03 – Waikato	21.40%	25.42%	34.39%	15.15%	3.64%
04 – Bay of Plenty	17.10%	20.74%	37.82%	19.35%	4.99%
05 – Gisborne	50.43%	19.93%	21.93%	7.50%	0.21%
06 – Hawke's Bay	33.47%	25.30%	29.79%	9.16%	2.28%
07 – Taranaki	28.83%	24.08%	33.13%	13.13%	0.83%
08 – Manawatū-Whanganui	41.81%	19.13%	25.67%	12.43%	0.96%
09 – Wellington	17.98%	19.51%	41.67%	13.62%	7.22%
10 – Top of the South	33.70%	23.83%	28.06%	12.94%	1.47%
11 – Canterbury	10.87%	29.16%	42.29%	16.36%	1.32%
12 – West Coast	17.75%	29.97%	38.04%	13.61%	0.63%
13 – Otago	21.83%	37.95%	26.55%	12.63%	1.04%
14 – Southland	6.99%	41.27%	37.99%	13.34%	0.42%
National%	23.21%	2.29%	13.50%	34.25%	26.75%

-

³³ https://spatial.nzta.govt.nz/apps/megamaps/

Resilience and security

This transport outcome is about minimising and managing the risks from natural and human-made hazards, anticipating and adapting to emerging threats, and recovering effectively from disruptive events. We intended to use strategic measure 4.1.1 and 4.1.2 from the <u>Land Transport Benefits Framework</u> to understand the resilience and security situation at national and regional level. However, we don't currently have data to calculate measure 4.1.1, so this time around we have only calculated measure 4.1.2. The intent of the measure 4.1.2 is to allow for description and measurement of the risk to level of service by unplanned disruption (including earthquakes, storms, volcanos and tsunamis). This measure is generally used for any investment that focuses on maintaining or increasing the resilience of the transport network.

Benefit framework measure	Units
4.1.1 Availability of a viable alternative to high-risk and high-impact route	Percentage of high-risk, high-impact route with a viable alternative
4.1.2 Level of service and risk	Number of identified sites in region by combined risk rating (future, geological and hydrological)

Notes, caveats and data limitations:

- The data for the following measure is sourced from the National Resilience Assessment Tool (NRAT) managed by NZTA.³⁴
- The following table shows the regional number of resilience risks on state highways under each risk band. This includes hydrological, geological and future risks.
- 'No rating' is for considered risk sites that have not yet been rated.
- There is no easy way to currently calculate future projections for this measure, but we are working on the capability to do so.

Regions	Critical	High	Moderate	Low	No rating
01 – Northland	29	84	276	171	169
02 – Auckland	5	13	29	41	1
03 – Waikato	20	175	212	174	149
04 – Bay of Plenty	16	64	153	121	67
05 – Gisborne	1	7	35	49	74
06 – Hawke's Bay	18	123	72	30	143
07 – Taranaki	0	11	9	0	98
08 – Manawatū-Whanganui	1	11	9	8	8
09 – Wellington	39	37	25	118	1
10 – Top of the South	9	51	59	177	91
11 – Canterbury	32	88	57	195	46
12 – West Coast	34	49	21	34	37
13 – Otago	26	84	86	247	172
14 – Southland	27	23	18	28	14
National	257	820	1061	1393	1070

_

³⁴ https://national-resilience-assessment-tool-nzta.hub.arcgis.com/

Economic prosperity

This transport outcome is about supporting economic activity via local, regional, and international connections, with efficient movements of people and products. We calculated the following strategic measures from the <u>Land Transport Benefits Framework</u> to measure the economic prosperity outcomes at both regional and national level.

Benefit framework measure	Units
5.1.2 Travel time reliability – motor vehicles (note for this evidence pack, the data only relates to state highway traffic monitoring system (TMS) sites)	Calculated using coefficient of variation (CoV); standard deviation of travel time divided by average minutes travel time Rate: Low <0.3, Medium 0.3–0.6, High >0.6)
5.1.3 Travel time delay	Difference between average travel time during AM peak and average travel time during the Inter Peak in minutes per kilometre (by mode) as a percentage
5.2.2 Freight – mode share value	Percentage of value for each mode
5.2.3 Freight – mode share weight	Percentage of weight for each mode

Notes, caveats and limitations:

- Data for travel time reliability and delay measures is sourced from the National Network Performance (NNP) platform managed by NZTA.
- The sources used to calculate following measures is limited to the TMS sites only that is, for state highways. In future, as more data is available in NNP for local roads, we intend to calculate using extensive local and state highway roads. Additionally, NNP will be able to assess both travel time delay and travel time reliability.
- The data for 5.1.2 Travel time reliability and 5.1.3 Travel time delay is for a typical day.
- Where we have gained access to regional model origin-destination data (for Auckland, Waikato, Wellington and Christchurch), we have used this to estimate current and future values of travel time for all available modes.
- Measure 5.2.2 Freight mode share value has been selected as one of the 14 strategic measures but currently, there is insufficient data to reliably calculate this. Therefore, the data table for this measure remains unpopulated as a placeholder.
- Measure 5.2.3 Freight mode share weight would ideally include coastal shipping but currently only includes road and rail modes.
- Future road freight is based on the same data used to forecast heavy commercial vehicle (HCV) VKT (also used for other measures) combined with average cargo weight from weigh-in-motion (WiM) sites (collected for the North Island only, but also applied to the South Island due to lack of data from the South Island). This data covers seven years and shows a trend of average load sizes decreasing over time. This trend line was used to estimate the 2048 average cargo weight (4615kg). Compared to the 2024 value (4822kg), this implies the average load size is projected to decrease by 7%. In contrast, national HCV VKT is projected to increase by 39% (2024 to 2048).
- The last seven years of rail freight net tonne-kilometres (NTK) by line segment has been provided by KiwiRail. This indicates that the amount of freight is reasonably steady over this period (with a small decline over the last few years). Based on the overall trend, we have assumed future year (2048) NTK will remain the same as current day (2024)
- A discrepancy in the rail data has been noted, where a 27km section of the network is missing from the calculations. This is possibly the section between Palmerston North and Woodville, which has been noted for further follow up.

5.1.2 Travel time reliability – motor vehicles

Region	Daily (CoV)			Peak time (Co\	/)	
	Low	Medium	High	Low	Medium	High
01 – Northland	96.43%	3.57%	0.00%	88.24%	0.00%	11.76%
02 – Auckland	96.67%	2.50%	0.83%	78.57%	9.18%	12.24%
03 – Waikato	94.59%	1.35%	4.05%	95.00%	0.00%	5.00%
04 – Bay of Plenty	100.00%	0.00%	0.00%	80.56%	19.44%	0.00%
05 – Gisborne	96.30%	3.70%	0.00%	100.00%	0.00%	0.00%
06 – Hawke's Bay	98.95%	1.05%	0.00%	65.38%	34.62%	0.00%
07 – Taranaki	94.74%	5.26%	0.00%	69.44%	16.67%	13.89%
08 – Manawatū-Whanganui	92.11%	7.89%	0.00%	82.56%	8.14%	9.30%
09 – Wellington	92.37%	6.78%	0.85%	67.90%	30.86%	1.23%
10 - Top of the South	100.00%	0.00%	0.00%	86.49%	10.81%	2.70%
11 – Canterbury	94.39%	3.96%	1.65%	73.98%	16.84%	9.18%
12 – West Coast	96.30%	1.23%	2.47%	98.08%	0.00%	1.92%
13 – Otago	92.59%	6.79%	0.62%	75.56%	17.78%	6.67%
14 – Southland	93.27%	5.77%	0.96%	71.43%	21.43%	7.14%
National	95.30%	3.84%	0.86%	77.34%	15.54%	7.12%

5.1.3 Travel time delay

Region	Peak (mins/km)	Inter-peak (mins/km)	Difference (mins/km)	%Change
01 – Northland	0.78	0.85	0.7	8.40%
02 – Auckland	0.77	0.86	0.8	10.23%
03 – Waikato	0.79	0.87	0.8	9.17%
04 – Bay of Plenty	0.69	0.76	0.6	8.18%
05 – Gisborne	0.75	0.77	0.2	3.30%
06 – Hawke's Bay	0.79	0.87	0.7	9.15%
07 – Taranaki	0.80	0.88	0.7	8.46%
08 – Manawatū-Whanganui	0.73	0.78	0.4	5.72%
09 – Wellington	0.83	1.00	0.2	16.94%
10 – Top of the South	0.82	0.84	0.1	1.98%
11 – Canterbury	0.75	0.77	0.2	3.46%
12 – West Coast	0.74	0.77	0.2	3.13%
13 – Otago	0.74	0.78	0.3	4.69%
14 – Southland	0.73	0.76	0.2	3.23%
National	0.76	0.83	0.6	8.17%

5.2.3 Freight – mode share weight – base year 2024

Region	Road (m NKT/yr)	Rail (m NKT/yr)	Total (m NKT/yr)	Road (%)	Rail (%)
01 – Northland	912	17	929	98%	2%
02 – Auckland	2904	132	3036	96%	4%
03 – Waikato	5016	751	5767	87%	13%
04 – Bay of Plenty	2208	534	2742	81%	19%
05 – Gisborne	301	0	301	100%	0%
06 – Hawke's Bay	1120	31	1152	97%	3%
07 – Taranaki	603	59	661	91%	9%
08 – Manawatū-Whanganui	1824	646	2470	74%	26%
09 – Wellington	1004	102	1106	91%	9%
10 – Top of the South	1193	60	1253	95%	5%
11 – Canterbury	4045	563	4608	88%	12%
12 – West Coast	409	313	722	57%	43%
13 – Otago	1396	220	1616	86%	14%
14 – Southland	776	73	849	91%	9%
15 – Chatham Islands	0	0	0	100%	0%
Grand total	23,712	3,500	27,212	87%	13%

5.2.3 Freight – mode share weight – future year 2048

Region	Road (m NKT/yr)	Rail (m NKT/yr)	Total (m NKT/yr)	Road (%)	Rail (%)
01 – Northland	912	17	929	98%	2%
02 – Auckland	2,904	132	3,036	96%	4%
03 – Waikato	5,016	751	5,767	87%	13%
04 – Bay of Plenty	2,208	534	2,742	81%	19%
05 – Gisborne	301	0	301	100%	0%
06 – Hawke's Bay	1,120	31	1,152	97%	3%
07 – Taranaki	603	59	661	91%	9%
08 – Manawatū-Whanganui	1,824	646	2,470	74%	26%
09 – Wellington	1,004	102	1,106	91%	9%
10 – Top of the South	1,193	60	1,253	95%	5%
11 – Canterbury	4,045	563	4,608	88%	12%
12 – West Coast	409	313	722	57%	43%
13 – Otago	1,396	220	1,616	86%	14%
14 – Southland	776	73	849	91%	9%
15 – Chatham Islands	0	0	0	100%	0%
Grand total	23,712	3,500	27,212	87%	13%

Environmental sustainability

This transport outcome is about transitioning to net zero carbon emissions, and maintaining or improving biodiversity, water quality and air quality. We calculated following strategic measures from the <u>Land Transport Benefits Framework</u> to the measure the economic prosperity outcomes at both regional and national level.

Benefit framework measure	Units
8.1.1 Greenhouse gas emissions (all vehicles)	Annual tonnes of CO ₂ equivalents (CO ₂ -e) emitted
8.1.3 Light vehicle use impacts	Annual light vehicle kilometres travelled (light VKT)

Notes, caveats and limitations:

- Current year data for VKT is sourced from NZTA's open data portal.
- Future light national VKT projections have been sourced from the NZTA 2024 Light VKT projection models. These are based on Stats NZ population growth and forecasts for GDP and fuel prices (mid-range assumptions have been adopted for this evidence pack).
- Future regional light vehicle VKT distribution is based on research work done by Beca (VKT and GHG emissions baseline report NZTA research note 008 September 2022). This assumes the base year light VKT per capita remains unchanged and uses population projection to estimate light VKT within each territorial local authority (TLA). The results are aggregated to spatial areas and adjusted to reconcile with the Ministry of Transport (MoT) observed and projected national totals. It uses base and projected light vehicle fleet GHG emissions factors from the Vehicle Fleet Emission Model (VFEM) to calculate GHG emissions for the baseline spatial areas. The report year 2035 (future) VKT values (by region) have been adjusted (scaled) to 2048 national light vehicle (LV) totals.
- Future year regional heavy vehicle VKT distribution has been calculated using growth factors
 comprising trend data, Stats NZ medium population forecast and Ministry of Business, Innovation
 and Employment (MBIE) GDP forecast data. This is a placeholder calculation pending further
 work on HCV demand forecasting currently being developed (using this general approach) as part
 of the PIE programme.
- GHG emissions have been estimated by applying light and heavy VKT to <u>Vehicle Emissions</u>
 <u>Prediction Model</u> (VEPM) (v7.0) emission rates (for current and future years) using the default
 MoT Vehicle Fleet Model (VFM) assumptions within VEPM (for each year) and average vehicle
 speeds from NNP or regional transport models (Auckland, Waikato, Wellington and Christchurch).
- Estimates of VKT are key inputs to multiple measures (such as vehicle emissions (affecting both health and environmental measures), DSIs, freight etc. Care has been taken to ensure consistency at the national, regional and local levels.

8.1.1 Greenhouse gas emissions (all vehicles)

Region	Current 2024	Future 2048	Change	% Change	Contribution
01 – Northland	0.61	0.27	-0.35	-57%	4%
02 – Auckland	3.58	2.19	-1.38	-39%	26%
03 – Waikato	2.00	1.36	-0.64	-32%	14%
04 – Bay of Plenty	1.01	0.63	-0.38	-38%	7%
05 – Gisborne	0.13	0.07	-0.06	-48%	1%
06 – Hawke's Bay	0.52	0.30	-0.22	-42%	4%
07 – Taranaki	0.35	0.19	-0.16	-46%	3%
08 – Manawatū-Whanganui	0.87	0.49	-0.38	-44%	6%
09 – Wellington	0.93	0.45	-0.48	-52%	7%
10 – Top of the South	0.51	0.36	-0.15	-30%	4%
11 – Canterbury	1.98	1.26	-0.71	-36%	14%
12 – West Coast	0.17	0.10	-0.08	-44%	1%
13 – Otago	0.78	0.40	-0.38	-48%	6%
14 – Southland	0.38	0.21	-0.17	-46%	3%
15 – Chatham Islands	0.002	0.001	-0.001	-39%	0.02%
National	13.83	8.29	-5.54	-40%	100%

8.1.3 Light vehicle use impacts

Region	Current 2024	Future 2048	Change	% Change	Contribution
01 – Northland	2172	2075	-97	-4%	5%
02 – Auckland	13137	20504	7367	56%	29%
03 – Waikato	5597	6514	918	16%	12%
04 – Bay of Plenty	3056	3349	293	10%	7%
05 – Gisborne	369	420	52	14%	1%
06 – Hawke's Bay	1581	1810	229	14%	3%
07 – Taranaki	1199	1397	198	17%	3%
08 – Manawatū-Whanganui	2702	2523	-179	-7%	6%
09 – Wellington	3488	4746	1258	36%	8%
10 - Top of the South	1484	1854	370	25%	3%
11 – Canterbury	6182	8583	2402	39%	14%
12 – West Coast	494	476	-18	-4%	1%
13 – Otago	2610	2624	14	1%	6%
14 – Southland	1175	1182	7	1%	3%
15 - Chatham Islands	5	4	-0.4	-7.9%	0%
National	45250	58062	12812	28%	100%

Inclusive access

This transport outcome is about enabling all people to participate in society through access to social and economic opportunities, such as work, education and health care. We calculated the 10.2.1 and 10.3.1 strategic measures from the <u>Land Transport Benefits Framework</u> to measure the inclusive access outcome both at the national and regional level.

Benefit framework measure	Units
10.2.1 People – mode share	Percentage by mode (Census (2023) journey to work and education)
10.3.1 Access to key social destinations (all modes)	Number of jobs (x1000) accessible by mode in AM peak (car 40 min, PT 45 min, cycle 45 min) and distance from city centre (km)

Notes, caveats and limitations:

- There is a limited information about measure 10.2.1 in the <u>Land Transport Benefits Framework</u> measures manual that is, its intent, scope, forecasting methods etc are not defined yet.
- Mode share data, that is main means of travel to work and education, is sourced from census 2023 outputs produced by Stats NZ.³⁵
- The data for all public transport (PT) modes (buses, trains and ferries) is aggregated together.
- Where we have gained access to regional model origin-destination data (for Auckland, Waikato, Wellington and Christchurch), we've used this to estimate current and future values of 10.2.1 People – mode share based on modelled relative changes applied to the base year census values.

10.2.1 People - mode share

Region	%Car	%PT	%Cycle	%Peds
01 – Northland	91.00%	1.33%	0.99%	6.67%
02 – Auckland	77.81%	11.29%	1.32%	9.58%
03 – Waikato	86.34%	2.69%	2.49%	8.48%
04 – Bay of Plenty	87.36%	2.06%	3.37%	7.22%
05 – Gisborne	89.78%	0.43%	2.54%	7.25%
06 – Hawke's Bay	88.12%	0.99%	2.96%	7.93%
07 – Taranaki	87.18%	1.25%	2.91%	8.66%
08 – Manawatū-Whanganui	86.33%	1.77%	2.60%	9.30%
09 – Wellington	63.97%	18.40%	2.98%	14.64%
10 – Top of the South	80.14%	1.09%	7.53%	11.24%
11 – Canterbury	85.26%	0.17%	3.27%	11.30%
12 – West Coast	79.75%	4.44%	6.27%	9.54%
13 – Otago	73.35%	4.38%	3.77%	18.50%
14 – Southland	87.70%	0.70%	3.40%	8.21%
Auckland city	77.78%	11.30%	1.32%	9.59%
Hamilton city	82.96%	4.96%	3.08%	9.01%

³⁵

https://explore.data.stats.govt.nz/?fs[0]=2023%20Census%2C0%7CTransport%23CAT TRANSPORT%23&pg=0&fc=2023%20Census&bp=true&snb=9

Region	%Car	%PT	%Cycle	%Peds
Tauranga city	85.33%	2.92%	4.65%	7.10%
Wellington city	48.62%	28.51%	3.59%	19.29%
Christchurch city	77.74%	5.84%	7.20%	9.22%
Queenstown-Lakes District	79.27%	4.13%	5.77%	10.83%
National total	79.45%	7.46%	2.91%	10.19%

Accessibility to employment

Notes, caveats and limitations:

- Data is sourced from the Accessibility Toolkit (ATK).
- It uses network-based travel times (by mode) between household locations and employment locations. This uses recorded travel times for general traffic, bus timetables for PT and road network distance with a constant average speed applied for cycles (the default used in OpenTripPlanner, which is 5m/s = 18km/h).
- Measure 10.3.1 currently estimates accessibility to employment rather than social destinations.
 Further work is progressing using ATK to also include access to social destinations, which will be included in subsequent versions of this evidence pack.
- ATK has been used to estimate future accessibility in a very limited way by only looking at
 changes associated with land-use growth based on population and employment sub-regional
 projections (while keeping base year travel times by mode). It may be possible to improve this in
 future releases, where other tools (currently being developed) can provide suitable inputs to ATK
 regarding future network performance (including travel times).

10.3.1 Access to key social destinations (all modes)

Region	Mode	Current year	(2023)	Future year (2048)			
		0–5km	5–10km	10+km	0–5km	5–10km	10+km
01 – Northland	Car	31,292	30,536	35,034	36,807	35,913	40,486
	PT	16,850	5,845	869	19,200	7,465	1,311
	Cycle	29,138	19,854	2,377	34,068	24,541	3,369
02 – Auckland	Car	716,503	536,916	455,088	899,714	670,758	582,690
	PT	313,788	177,213	124,557	388,878	224,214	151,103
	Cycle	355,847	280,586	216,239	451,914	355,494	265,792
03 – Waikato	Car	133,357	133,999	213,804	176,632	177,837	276,406
	PT	69,881	25,929	9,321	95,049	33,744	12,351
	Cycle	104,923	82,607	16,567	140,886	112,340	21,034
04 – Bay of Plenty	Car	79,040	77,841	93,611	103,455	101,584	107,430
	PT	35,631	23,794	18,017	47,915	32,656	20,225
	Cycle	58,707	40,240	26,289	77,374	54,337	29,099
05 – Gisborne	Car	17,327	17,265	25,979	18,308	18,254	27,378
	PT	9,241	144	147	9,421	137	150
	Cycle	15,211	10,255	517	15,898	9,799	849
06 – Hawke's Bay	Car	72,436	71,160	165,625	82,291	81,101	186,660
	PT	18,570	12,495	21,930	20,305	13,607	26,451
	Cycle	27,802	26,148	59,881	30,745	29,448	70,751
07 – Taranaki	Car	36,869	36,779	81,917	41,180	40,985	91,527
	PT	17,946	6,379	3,989	19,839	7,537	4,939
	Cycle	27,594	21,814	5,315	30,784	26,806	6,171

08 – Manawatū- Whanganui	Car	63,400	60,858	116,324	70,215	68,118	129,915
	PT	42,455	8,809	12,769	47,710	12,863	14,373
	Cycle	49,725	27,467	15,275	55,486	31,480	16,815
09 – Wellington	Car	226,937	203,306	257,735	254,242	227,977	286,594
	PT	149,015	87,351	100,318	169,490	97,902	112,643
	Cycle	160,012	138,296	82,987	178,699	153,837	93,008
10 – Top of the South	Car	59,509	39,238	43,526	65,205	43,653	48,604
	PT	33,554	20,850	2,236	36,531	23,406	2,550
	Cycle	48,104	34,767	5,135	52,973	39,147	5,744
11 – Canterbury	Car	246,820	237,377	350,704	298,103	286,139	440,946
	PT	135,521	83,670	25,420	164,523	99,853	33,350
	Cycle	197,173	163,672	46,480	238,400	196,568	59,540
12 – West Coast	Car	6,225	6,455	14,589	5,843	6,196	13,893
	PT	3,757	183	1,862	3,445	210	2,326
	Cycle	5,537	4,664	3,015	5,099	4,604	3,432
13 – Otago	Car	59,213	58,364	112,598	62,075	61,521	128,941
	PT	45,898	27,674	13,916	48,301	33,897	16,699
	Cycle	53,343	41,614	12,458	55,959	47,303	15,473
14 – Southland	Car	32,733	33,106	69,145	34,463	34,638	71,342
	PT	20,598	10,281	2,169	21,320	13,138	2,138
	Cycle	27,027	22,387	4,685	28,399	26,232	4,374
National	Car	1,781,661	1,543,200	2,035,679	2,148,533	1,854,674	2,432,812
	PT	912,705	490,617	337,520	1,091,927	600,629	400,609
	Cycle	1,160,143	914,371	497,220	1,396,684	1,111,936	595,451